492 resultados para POLYESTER-TONER


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms involved in the production of chromate-phosphate conversion coatings on aluminium have been investigated. A sequence of coating nucleation and growth has been outlined and the principle roles of the constituent ingredients of the chromate-phosphate solution have been shown. The effect of dissolved aluminium has been studied and its role in producing sound conversion coatings has been shown. Metallic contamination has been found to have a dramatic influence on chromate-phosphate coatings when particular levels have been exceeded. Coating formation was seen to be affected in proportion to the level of contaminaton; no evidence of sudden failure was noted. The influence of substrate and the effect of an acidic cleaner prior to conversion coating have been studied and explained. It was found that the cleaner ages rapidly and that this must .be allowed for when attempting to reproduce industrial conditions in the laboratory. A study was carried out on the flowing characteristics of polyester powders of various size distributions as they melt using the hot-stage microscopy techniques developed at Aston. It was found that the condition of the substrate (ie extent of pretreatment), had a significant effect on particle flow. This was explained by considering the topography of the substrate surface. A number of 'low-bake' polyester powders were developed and tested for mechanical, physical and chemical resistance. The best formulation had overall properties which were as good as the standard polyester in many respects. However chemical resistance was found to be slightly lower. The charging characteristics of powder paints during application by means of electrostatic spraying was studied by measuring the charge per unit mass and relating this to the surface area. A high degree of correlation was found between charge carried and surface area, and the charge retained was related to the powder's formulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant number of poly a-ester homologues of poly(L-lactide) (PLLA) have been synthesized and used in miscibility studies together with conventional isomeric diacid-diol polyester variants, poly ß-esters (based on ß-hydroxybutyrate (HB) and ß-hydroxyvalerate (HV)), poly e-caprolactone (PCL), poly e-caprolactone copolymers (e.g. poly(L-lactide-co-caprolactone), and a series of cellulose-based polymers (e.g. cellulose acetate butyrate (CAB), cellulose acetate propionate (CAP)). A combinatorial approach to rapid miscibility screening using 96-well plates and a uv-visible multi-wavelength plate reader has been developed enabling the clarity of PLLA-based multi-component blend films to be observed. Using these techniques and materials, the ternary phase compatibility diagrams of a range of three-component blend films was prepared, illustrating ranges of behavior varying from miscible blends giving rise to clear films to immiscible blends which are opaque. In this way, novel three-component blends of PLLA/CAB/PCL were developed which are miscible when the CAB content is more than 30%, PLLA less than 80% and PCL less than 60%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human immunodeficiency virus (HIV) kills more people worldwide than any other infectious disease. Approximately 42 million people, mostly in Africa and Asia, are currently infected with HIV (Figure 3.1), and 5 million new infections occur every year (AIDS Epidemic Update, 2002). It is estimated that 22 milIion people have died since the first clinical evidence of AIDS (acquired immunodeficiency syndrome) emerged in 1981 ('Mobilization for Microbicides' ~ The Rockfeller Foundation). HIV is generally transmitted in one of three ways: through unprotected sexual intercourse, blood-to-blood contact, and mother-to-child transmission. Once the virus has entered the body, it invades the cells of the immune system and initiates the production of new virus particles with concomitant destruction of the immune cells. As the number of immune cells in the body slowly declines, weight loss, debilitation, and eventually death occur due to opportunistic infections or cancers. Although AIDS is presently incurable, highly active antiretroviral therapy (HAART), where a cocktail of potent antiretroviral drugs are administered daily to HIV-positive patients to control the viral load, has resulted in dramatic reductions in HIV-related morbidity and mortality in the developed world

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this work was to optimize biodegradable polyester poly(glycerol adipate-co-ω-pentadecalactone), PGA-co-PDL, microparticles as sustained release (SR) carriers for pulmonary drug delivery. Methods: Microparticles were produced by spray drying directly from double emulsion with and without dispersibility enhancers (L-arginine and L-leucine) (0.5-1.5%w/w) using sodium fluorescein (SF) as a model hydrophilic drug. Results: Spray-dried microparticles without dispersibility enhancers exhibited aggregated powders leading to low fine particle fraction (%FPF) (28.79±3.24), fine particle dose (FPD) (14.42±1.57 μg), with a mass median aerodynamic diameter (MMAD) 2.86±0.24 μm. However, L-leucine was significantly superior in enhancing the aerosolization performance ( L-arginine:%FPF 27.61±4.49-26.57±1.85; FPD 12.40±0.99-19.54±0.16 μg and MMAD 2.18±0.35-2. 98±0.25 μm, L-leucine:%FPF 36.90±3.6-43.38±5. 6; FPD 18.66±2.90-21.58±2.46 μg and MMAD 2.55±0.03-3. 68±0.12 μm). Incorporating L-leucine (1.5%w/w) reduced the burst release (24.04±3.87%) of SF compared to unmodified formulations (41.87±2.46%), with both undergoing a square root of time (Higuchi's pattern) dependent release. Comparing the toxicity profiles of PGA-co-PDL with L-leucine (1.5%w/w) (5 mg/ml) and poly(lactide-co-glycolide), (5 mg/ml) spray-dried microparticles in human bronchial epithelial 16HBE14o-cell lines, resulted in cell viability of 85.57±5.44 and 60.66±6.75%, respectively, after 72 h treatment. Conclusion:The above data suggest that PGA-co-PDL may be a useful polymer for preparing SR microparticle carriers, together with dispersibility enhancers, for pulmonary delivery. © Springer Science+Business Media, LLC 2011.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A szerzők cikkükben a számítástechnikai hulladékokkal foglalkoznak, számítástechnikai eszközök alatt a számítógép konfigurációk összetevőit értik, tehát számítógépeket (asztali, hordozható, terminál stb.), és perifériáit (monitor, nyomtató, cd-író stb.), valamint ezek alkatrészeit és kiegészítőit (chipek, mechanikus részek, festékkazetták stb.). A rendszeres használat környezeti hatásait csak abból a szempontból vizsgálták, hogy ennek során bizonyos alkatrészek, kellékek (kiemelten a nyomtatók festékkazettái) a gépnél nagyobb gyakorisággal cserélődnek, s válhatnak hulladékká. A fő fókusz a számítástechnikai eszközök élettartamának vége, s ebből a szempontból kulcsfogalom a használt személyi számítógép kategória. _____ In their article, the authors discuss the issue of computer waste; under the category of information technology devices they understand the components of computer configurations, that is computers (desktop, portable, terminal etc.) and their peripheries (monitor, printer, CD writer, etc), and also the components and supplements of these (chips, mechanical parts, toner cartridges, etc.). The environmental impact of regular use was examined only from one aspect: during regular use certain components and accessories (especially the toner cartridges of printers) are more often changed and become waste. The main focus is the end of the life time of computer devices, and from this point of view used personal computers are a key concept.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of a compact, wearable Conformal Strongly Coupled Magnetic Resonance (CSCMR) system is studied when the antenna is in the air and is worn on a user’s arm. The wireless powering system consists of the receiver and load elements designed on a printed circuit board that is attached to a polyester fabric band. The wearable antenna achieves high efficiency, has a small volume, and can be easily printed on substrates. Although the user effect on mobile terminal antennas has been studied in detail, absorption losses in wearable antennas have not been widely investigated. Our results show that efficiency of the antenna in free space is 70% and on a user’s arm is 50%. Human tissue in the close proximity of our wearable Conformal SCMR caused a decrease in radiated efficiency and total efficiency. This undesired degradation in antenna efficiency might be attributed to body loss and absorption losses. Our findings can be used as a reference for future studies on wearable devices and their applications, such as health and sports monitoring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to manufacture and characterize a hybrid plastic composite with the matrix isophthalic polyester resin base and having as reinforcing glass fiber and the dry endocarp of coconut (Coco nucifera Linn) in the form of particles as filler. The composite was made industrially in Tecniplas Industry and Trade LTDA. in the form of plate, and was manufactured process made by the manual lamination (Hand Lay Up). From the plate they were prepared test specimens for testing density, water absorption, uniaxial traction in dry and wet states, and testing of bending, as well as studies on the behavior of the generated fractures, macroscopic and microscopic, in mechanical tests through. All tests were performed in order to find the most viable applications the hybrid composite manufactured. The tensile and bending tests were analyzed last tensile properties, elasticity and deformation module. After the studies, it is observed that the percentage moisture absorbed was 3.03%. The presence of moisture in the tensile test meant a decrease of 19.77% from last stand, and 5.26% in the elastic modulus. For bending tests gave an average value of 69.13 MPa flexural strength. The results show the application of hybrid composite studied in lightweight structures, indoors, which require low / medium performance traction demands, and which involve flexural requests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

He was obtained and studied the feasibility of using TPA (Tissue Cotton Plan) screen type, for bagging, with a weight of 207.9 g / m2 in a composite of orthophthalic crystal polyester resin matrix. The process for obtaining the composite was tested against the maximum number of layers that could be used without compromising the processability and manufacturing of CPs in compression mold. Five configurations / formulations were selected and tested at 1, 4, 8, 10 and 12 layers of cotton tissue - TPA. TPA was not subjected to chemical treatment, only by passing a mechanical washing process. The composite in its various configurations / formulations was characterized to determine its physical properties. The properties of the composite were higher viability resistance to bending, approaching the matrix and impact resistance, superiority in relation to the polyester resin. Another property that has shown good result compared to other composite has water absorption. Analyzing all the properties set the settings / formulations with higher viability were TA8 and TA10, by combining good processability and higher mechanical strength, with lower loss compared to polyester resin matrix. The composite showed lower mechanical behavior of the resin matrix for all the formulations studied except the impact resistance. The SEM showed a good adhesion between the layers of TPA and polyester resin matrix, without the presence of micro voids in the matrix confirming the efficient manufacturing process of the samples for characterization. The composite proposed proved to be viable for the fabrication of structures with low requests from mechanical stresses, and as demonstrated for the manufacture of solar and wind prototypes, and packaging, shelving, decorative items, crafts and shelves, with good visual appearance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.