842 resultados para PLASMON
Resumo:
Numerous reports have focused on ferrocene-terminated electroactive self-assembled monolayers (SAMs) on a flat An surface but only a few on ferrocene SAMs on An colloid. In this paper, we employ 4-ferrocene thiophenol as a novel capping agent to produce electroactive gold nanoparticles in consideration of the peculiar pi-conjugated structure. Transmission electron microscopy shows the narrow-dispersed gold core with an average core diameter of ca. 2.5 nm. UV/vis spectra examine the pi-conjugated structure of 4-ferrocene thiophenol and surface plasmon absorbance of the indicated gold nanoparticles. X-ray photoelectron spectroscopy reveals electronic properties of the An core and thiol ligands. Electrochemical measurement shows that the oxidation peak current is proportional to the scan rate, indicating the electrode process is controlled by adsorbed layer reaction. The formal potential of the Fc-MPCs is compared with that of free ferrocene in MeCN solution and the Fc-SAMs. The shifts are attributed to the phenyl moiety in the 4-ferrocene thiophenol and dielectric constant of the solvation environment.
Resumo:
(3-Aminopropyl)trimethoxysilane (APTMS)-supported gold colloid electrode was constructed by virtue of a recently developed solution-based self-assembly strategy. The preparing procedure of 3-mercaptopropionic acid (MPA)-bridged copper hexacyanoferrate (CuHCF) multilayers on a planar macroelectrode (Bharathi et al. Langmuir 2001, 17, 7468) was copied to the as-prepared colloid electrode. The optical spectra, atomic force microscopy, and electrochemistry demonstrate successful copy of the multilayer system on a macroelectrode to the as-prepared colloid electrode. Remarkably, it was found that multilayer growth is highly selective to the nanoscale sites where gold nanoparticles are immobilized, and multilayer growth does not take place on the sites without nanoparticles. Interestingly, a preliminary electrochemical investigation indicates that electrochemical properties of multilayers systems on the colloid electrode are different from their counterparts on a planar macroelectrode, which might be due to high curvature effects of the gold nanoparticles. This indicates a different motif of multilayers on the colloid electrode from that on a planar macroelectrode.
Resumo:
Protein multilayers composed of avidin and biotin-labeled antibody (bio-Ab) were prepared on gold surface by layer-by-layer assembly technology using the high specific binding constant (K-a: approximate to 10(15) M-1) between avidin and biotin. The assembly process of the multilayer films was monitored by using real-time BIA technique based on surface plasmon resonance (SPR). The multilayer films were also characterized by electrochemical impedance spectroscopy (EIS) and reflection absorption Fourier transform infrared spectroscopy (FTIR). The results indicate that the growth of the multilayer is uniform. From response of SPR for each layer, the stoichiometry S for the interaction between avidin and bio-Ab is calculated to be 0.37 in the multilayer whereas 0.82 in the first layer. The protein mass concentration for each layer was also obtained. The schematic figure for the multilayer assembly was proposed according to the layer mass, concentration and S value. The utility of the mutilayer films for immunosensing has been investigated via their subsequent interaction with hIgG. The binding ability of the multilayer increased for one to three layers of antibody, and then reach saturation after the fourth layer. These layer-by-layer constructed antibody multilayers enhance the binding ability than covalently immobilized monolayer antibody. This technology can be also used for construction of other thin films for immunosensing and biosensor.
Resumo:
It is impossible for surface plasmon resonance to measure directly the binding kinetics between a low-molecular-weight analyte interacting and its immobilized binding partner. Solution competition method was applied to the kinetic study of the interaction between morphine and its antibody. The affinity constant between the antibody of morphine and morphine-BSA immobilized on the sensor chip was also obtained. The result showed that the affinity of polyclonal antibody is stronger than that of monoclonal antibody. And it also indicated that the protein combined with the analyte affected the binding of antibody to antigen.
Resumo:
Biomolecule template gives new opportunities for the fabrication of novel materials with special features. Here we report a route to the formation of DNA-polyaniline (PAn) complex, using immobilized DNA as a template. A gold electrode was first modified with monolayer of 2-aminoethanethiol by self-assembly. Thereafter, by simply immersing the gold electrode into DNA solution, DNA molecules can be attached onto the gold surface, followed by the DNA-templated assembly and electropolymerization of protonated aniline. The electrostatic interactions between DNA and aniline can keep the aniline monomers aligning along the DNA strands. Investigations by surface plasmon resonance (SPR), electrochemistry and reflection absorption UV/Vis-Near IR spectroscopy substantially convince that PAn can be electrochemically grown around DNA template on gold surface. This work may be provides fundamental aspects for building PAn nanowires with DNA as template on solid surface if DNA molecules can be individually separated and stretched.
Resumo:
Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.
Resumo:
An automated biomolecular interaction analysis instrument (BI-Acore) based on surface plasmon resonance (SPR) has been used to determine human immunoglobulin G (IgG) in real time. Polyclonal anti-human IgG antibody was covalently immobilized to a carboxymethyldextran modified gold film surface. The samples of human IgG prepared in HBS buffer were poured over the immobilized surface. The signal amplification antibody was applied to amplify the response signal. After each measurement, the surface was regenerated with 0.1 mol/L H3PO4. The assay was rapid, requiring only 30 min for antibody immobilization and 20 min for each subsequent process of immune binding, antibody amplification and regeneration. The antibody immobilized surface had good response to human IgG in the range of 0.12-60 nmol/L with a detection limit of 60 pmol/L. The same antibody immobilized surface could be used for more than 110 cycles of binding, amplification and regeneration. The results demonstrate that the sensitivity, specificity and reproducibility of amplified immunoassay using real-time BIA technology are satisfactory.
Resumo:
The dynamic interaction process of calmodulin with an immobilized peptide melittin was investigated in real time by surface plasmon resonance spectroscopy, and dissociation constant of the complex was calculated to be 3.37 x 10(-6) mol/L.
Resumo:
Layer-by-layer assembly of multilayer films of streptavidin and biotinylated antibody was completed on the streptavidin coated surface. Real-time biomolecular interaction analysis (BIA) based on surface plasmon resonance technique was used to monitor the multilayer assembly in solution continuously. The results indicate that the uniform multilayer film can be fabricated successfully based on the strong interaction between streptavidin and biotin. The mean surface mass concentration of each adsorption layer is 1. 32 ng/mm(2) for biotinylated antibody, 2. 93 ng/mm(2) for streptavidin, according to the correlation of SPR response with surface concentration.
Resumo:
The photoelectrocatalytic effect for the reduction of CO2 mediated with methylviologen (MV) was studied at mercury, polished silver and roughened silver electrodes using electrochemical and surface-enhanced Raman scattering (SERS) techniques. A large photoelectrocatalytic effect for the reduction of CO2 in the presence of MV was observed at the roughened silver electrode, whereas there was only a very small photoelectrocatalytic current at a more negative potential on mercury and polished silver electrodes. The SERS spectra of MV in the presence and absence of CO2, along with the electrochemical results, demonstrate that the surface adsorbed complexes, MV+ -Ag and MV0-Ag, played a role as the mediator for photoinduced electron transfer to CO2 in the solution. The results also suggest that the surface plasmon resonance of the nanoscale silver particle contributes to the overall photoelectrocatalytic effect on a roughened silver electrode.
Resumo:
The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. The real-time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were also used to study the film assembly, and linear film growth was observed. All the results indicate that the uniform multilayer can be obtained on the poly(ethylenimine)- (PEI-) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by the real-time BIAcore technique; the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1).
Resumo:
In this paper, we demonstrate for the first time that upon electrochemical oxidation/reduction, the transition in the conductivity of polyaniline (PAn) film on gold electrode surface leads to a large change of surface plasmon resonance (SPR) response due to a change in the imaginary part of dielectric constant of PAn film. Based on the amplifying response of SPR to the redox transformation of PAn film as a direct result of the enzymatic reaction between horseradish peroxidase (HRP) and PAn in the presence of H2O2, a novel PAn-mediated HRP sensor has been fabricated. The electrochemical SPR biosensor, unlike a usual binding assay with SPR, can afford a larger SPR response, and can also be reused by reducing the PAn film electrochemically to its reduced state. This method opens up a new route to the fabrication of SPR biosensor. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
Photoelectrochemical reduction of nitrite and nitrate was studied on the surface of an electrochemically roughened silver electrode. The dependence of the photocurrent on photon energy, applied potential, and concentration of nitrite was determined. It was concluded that the photoelectrochemical reduction proceeds via a photoemission process followed by the capture of hydrated electrons by electron accepters. The excitation of plasmon resonances in nanosize metal structures produced during the roughening procedure resulted in the enhancement of the photoemission process. Ammonia was detected as one of the final products in this reaction. Mechanisms for the photoelectrochemical reduction of nitrite and nitrate are proposed.
Resumo:
The hybridization kinetics for a series of designed 25mer probe�target pairs having varying degrees of secondary structure have been measured by UV absorbance and surface plasmon resonance (SPR) spectroscopy in solution and on the surface, respectively. Kinetic rate constants derived from the resultant data decrease with increasing probe and target secondary structure similarly in both solution and surface environments. Specifically, addition of three intramolecular base pairs in the probe and target structure slow hybridization by a factor of two. For individual strands containing four or more intramolecular base pairs, hybridization cannot be described by a traditional two-state model in solution-phase nor on the surface. Surface hybridization rates are also 20- to 40-fold slower than solution-phase rates for identical sequences and conditions. These quantitative findings may have implications for the design of better biosensors, particularly those using probes with deliberate secondary structure.