977 resultados para PLA farine stampa 3D additive manufacturing materiali compositi FDM annealing bio-compositi
Resumo:
Enterprise Resource Planning (ERP) system literature reports very little research on post-adoption stages, that is, actual usage and value. Even fewer studies focus on the specificities of an industry analysis. Based on the Technology-Organizational-Environment (TOE) framework and the Resource-Based View (RBV) theory, we develop a research model to measure and examine determinants of ERP use and value and their impact in the Iberian region (Portugal and Spain) across Manufacturing and Services industries in Small and Medium Enterprises (SMEs). The empirical test was conducted through structural equation modelling, using data from 261 firms in the peninsula in the Manufacturing and Service industries. Results show that amongst ERP use determinants, Training is the most important determinant for Service firms and Compatibility for Manufacturing firms. Firm size, Analytics, and Collaboration contribute to ERP Value in both industries, with Analytics being more important for the Service industry. The paper provides insight into which determinants contribute to ERP use and ERP value in Iberian Manufacturing and Services SMEs, offering managerial and academic implications.
Resumo:
Micro/nano wrinkled patterns on cross-linked urethane/urea polymeric flexible free standing films with two soft segments, polypropylene oxide and polybutadiene, can be induced by UV-irradiation. The ability to write/erase these 3D structures, in a controlled manner, is the main focus of this work. The imprinting of the wrinkled structures was accomplished by swelling in an appropriate solvent followed by drying the membranes after the cross-linking process and UV irradiation. The surface tailoring of the elastomeric membranes was imaged by optical microscopy, scanning electronic microscopy and by atomic force microscopy. To erase the wrinkled structures the elastomers were swollen. The swelling as well as the sol/gel fraction and the UV radiation were tuned in order to control the wrinkles characteristics. It was found that the wrinkles wavelength, in the order of microns (1±0,25μm), was stamped by the UV radiation intensity and exposure time while the wrinkles' amplitude, in the order of nanometers (150-450 nm), was highly dependent on the swelling and sol/gel fraction. A prototype for volatile organic compounds detection was developed taking advantage of the unique 3D micro/nano wrinkles features.
Resumo:
A Engenharia de Tecidos surge da necessidade recorrente de regenerar ou recriar órgãos e tecidos danificados devido a vários tipos de trauma. A carência de funcionalidades resultante pode ser resolvida através da implantação de substitutos bio-sintéticos. O presente trabalho consiste na produção de matrizes porosas 3D baseadas em réplicas invertidas de cristais coloidais com futura aplicação em substituintes ósseos sintéticos para fraturas de não-união. O substituinte ósseo consiste numa estrutura denominada Inverse colloidal crystal (ICC), em que a sua organização singular resulta numa homogénea proliferação celular e num aumento das propriedades mecânicas, quando comparada com outros substituintes. O primeiro passo para a obtenção desta estrutura é a produção de microesferas de poliestireno, por uma técnica baseada em microfluídica. Posteriormente as microesferas são empacotadas resultando numa estrutura coesa com ligações entre microesferas vizinhas. O preenchimento dos espaços vazios entre microesferas pelo biomaterial pretendido e posterior remoção das microesferas dá origem à estrutura porosa do ICC. ICCs poliméricos (ϕCs = 1,00) e compósitos (ϕCs = 0,86 e ϕHA = 0,14; ϕCs = 0,67 e ϕHA = 0,33; ϕCs = ϕHA = 0,50) são produzidos e as suas propriedades mecânicas são testadas através de ensaios de compressão e comparadas com outros substituintes sintéticos. Para avaliação do comportamento dos materiais em contacto com meio biológico, foram realizados testes de citotoxicidade que revelaram uma viabilidade celular acima dos 80% em todos os ICCs.
Resumo:
The development of human cell models that recapitulate hepatic functionality allows the study of metabolic pathways involved in toxicity and disease. The increased biological relevance, cost-effectiveness and high-throughput of cell models can contribute to increase the efficiency of drug development in the pharmaceutical industry. Recapitulation of liver functionality in vitro requires the development of advanced culture strategies to mimic in vivo complexity, such as 3D culture, co-cultures or biomaterials. However, complex 3D models are typically associated with poor robustness, limited scalability and compatibility with screening methods. In this work, several strategies were used to develop highly functional and reproducible spheroid-based in vitro models of human hepatocytes and HepaRG cells using stirred culture systems. In chapter 2, the isolation of human hepatocytes from resected liver tissue was implemented and a liver tissue perfusion method was optimized towards the improvement of hepatocyte isolation and aggregation efficiency, resulting in an isolation protocol compatible with 3D culture. In chapter 3, human hepatocytes were co-cultivated with mesenchymal stem cells (MSC) and the phenotype of both cell types was characterized, showing that MSC acquire a supportive stromal function and hepatocytes retain differentiated hepatic functions, stability of drug metabolism enzymes and higher viability in co-cultures. In chapter 4, a 3D alginate microencapsulation strategy for the differentiation of HepaRG cells was evaluated and compared with the standard 2D DMSO-dependent differentiation, yielding higher differentiation efficiency, comparable levels of drug metabolism activity and significantly improved biosynthetic activity. The work developed in this thesis provides novel strategies for 3D culture of human hepatic cell models, which are reproducible, scalable and compatible with screening platforms. The phenotypic and functional characterization of the in vitro systems performed contributes to the state of the art of human hepatic cell models and can be applied to the improvement of pre-clinical drug development efficiency of the process, model disease and ultimately, development of cell-based therapeutic strategies for liver failure.
Resumo:
A produção de estruturas tridimensionais poliméricas tem sido foco de estudo por parte da Engenharia de Células e Tecidos, pelo que mimetizam melhor as condições in vivo dos tecidos. A conjugação das propriedades eléctricas com arquitectura 3D permite uma regeneração tecidual mais eficaz. Desta forma este estudo incidiu na construção de scaffolds, que conjugasse as propriedades mecânicas, eléctricas e biológicas num só suporte. O processo utilizado para produção de scaffolds baseou-se na electrofiação de soluções poliméricas de PCL (8% m/m) com incorporação de óxido de grafeno em diferentes concentrações: 0.01%, 0.1% e 0.25% (m/V). Foram avaliados os parâmetros de electrofiação que permitiram a organização tridimensional. A composição química e a morfologia das membranas foram avaliadas por FTIR-ATR e por microscopia electrónica de varrimento (MEV), respectivamente. Através de ensaios de tracção e de permeabilidade estudou-se a influência de óido de grafeno na matriz polimérica. Foram feitas experiências de redução de óxido de grafeno nas fibras electrofiadas, tanto nas membranas como das espumas, através do uso de vapores de hidrazina. Este mecanismo mostrou-se ineficaz, uma vez que afectou a sua morfologia. As espumas foram avaliadas quanto à sua bioactividade e propriedades mecânicas (ensaios de compressão). Também foram realizados testes de viabilidade celular nas membranas e de adesão celular nas espumas, de forma a avaliar o seu potencial para aplicação biomédica. Os resultados destes ensaios revelaram que óxido de grafeno não apresenta efeitos citotóxicos para o organismo e a sua presença promove a adesão celular ao scaffold.
Resumo:
Esta plataforma foi projetada como auxílio complementar ao processo de reabilitação de doentes afásicos lusófonos. Uma gama de exercícios são disponibilizados de forma a induzir diferentes estímulos (compreensão escrita e auditiva e expressão escrita) sendo a grande maioria destes realizados dentro de um ambiente virtual em três dimensões onde o utilizador (dependendo da tarefa) pode interagir com objetos presentes dentro de uma casa. A principal particularidade desta plataforma reside no facto desta estar alojada online, dispensando instalações e permitindo um acompanhamento mais próximo por parte do terapeuta da fala do progresso feito pelo paciente. A ferramenta desenvolvida está disponível para visualização e teste no endereço www.weblisling.net.
Resumo:
Contém resumo
Resumo:
In recent years a set of production paradigms were proposed in order to capacitate manufacturers to meet the new market requirements, such as the shift in demand for highly customized products resulting in a shorter product life cycle, rather than the traditional mass production standardized consumables. These new paradigms advocate solutions capable of facing these requirements, empowering manufacturing systems with a high capacity to adapt along with elevated flexibility and robustness in order to deal with disturbances, like unexpected orders or malfunctions. Evolvable Production Systems propose a solution based on the usage of modularity and self-organization with a fine granularity level, supporting pluggability and in this way allowing companies to add and/or remove components during execution without any extra re-programming effort. However, current monitoring software was not designed to fully support these characteristics, being commonly based on centralized SCADA systems, incapable of re-adapting during execution to the unexpected plugging/unplugging of devices nor changes in the entire system’s topology. Considering these aspects, the work developed for this thesis encompasses a fully distributed agent-based architecture, capable of performing knowledge extraction at different levels of abstraction without sacrificing the capacity to add and/or remove monitoring entities, responsible for data extraction and analysis, during runtime.
Resumo:
Neurological disorders are a major concern in modern societies, with increasing prevalence mainly related with the higher life expectancy. Most of the current available therapeutic options can only control and ameliorate the patients’ symptoms, often be-coming refractory over time. Therapeutic breakthroughs and advances have been hampered by the lack of accurate central nervous system (CNS) models. The develop-ment of these models allows the study of the disease onset/progression mechanisms and the preclinical evaluation of novel therapeutics. This has traditionally relied on genetically engineered animal models that often diverge considerably from the human phenotype (developmentally, anatomically and physiologically) and 2D in vitro cell models, which fail to recapitulate the characteristics of the target tissue (cell-cell and cell-matrix interactions, cell polarity). The in vitro recapitulation of CNS phenotypic and functional features requires the implementation of advanced culture strategies that enable to mimic the in vivo struc-tural and molecular complexity. Models based on differentiation of human neural stem cells (hNSC) in 3D cultures have great potential as complementary tools in preclinical research, bridging the gap between human clinical studies and animal models. This thesis aimed at the development of novel human 3D in vitro CNS models by integrat-ing agitation-based culture systems and a wide array of characterization tools. Neural differentiation of hNSC as 3D neurospheres was explored in Chapter 2. Here, it was demonstrated that human midbrain-derived neural progenitor cells from fetal origin (hmNPC) can generate complex tissue-like structures containing functional dopaminergic neurons, as well as astrocytes and oligodendrocytes. Chapter 3 focused on the development of cellular characterization assays for cell aggregates based on light-sheet fluorescence imaging systems, which resulted in increased spatial resolu-tion both for fixed samples or live imaging. The applicability of the developed human 3D cell model for preclinical research was explored in Chapter 4, evaluating the poten-tial of a viral vector candidate for gene therapy. The efficacy and safety of helper-dependent CAV-2 (hd-CAV-2) for gene delivery in human neurons was evaluated, demonstrating increased neuronal tropism, efficient transgene expression and minimal toxicity. The potential of human 3D in vitro CNS models to mimic brain functions was further addressed in Chapter 5. Exploring the use of 13C-labeled substrates and Nucle-ar Magnetic Resonance (NMR) spectroscopy tools, neural metabolic signatures were evaluated showing lineage-specific metabolic specialization and establishment of neu-ron-astrocytic shuttles upon differentiation. Chapter 6 focused on transferring the knowledge and strategies described in the previous chapters for the implementation of a scalable and robust process for the 3D differentiation of hNSC derived from human induced pluripotent stem cells (hiPSC). Here, software-controlled perfusion stirred-tank bioreactors were used as technological system to sustain cell aggregation and dif-ferentiation. The work developed in this thesis provides practical and versatile new in vitro ap-proaches to model the human brain. Furthermore, the culture strategies described herein can be further extended to other sources of neural phenotypes, including pa-tient-derived hiPSC. The combination of this 3D culture strategy with the implemented characterization methods represents a powerful complementary tool applicable in the drug discovery, toxicology and disease modeling.
Resumo:
Bone tissue engineering requires a biocompatible scaffold that supports cell growth and enhances the native repair process. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) is a biodegradable 3D scaffold with 88.1 â 0.3% porosity and pore size of 163.5 â 0.1 mm. Previous studies demonstrated the potential of PHB-HV as a scaffold in spinal cord repair. The aim of this study was to evaluate PHB-HV as a scaffold for bone regeneration by assessing the cytocompatability of this scaffold.
Resumo:
Cell encapsulation within hydrogel microspheres shows great promise in the field of tissue engineering and regenerative medicine (TERM). However, the assembling of microspheres as building blocks to produce complex tissues is a hard task because of their inability to place along length scales in space. We propose a proof-of-concept strategy to produce 3D constructs using cell encapsulated as building blocks by perfusion based LbL technique. This technique exploits the â bindingâ potential of multilayers apart from coating
Resumo:
Human activity is very dynamic and subtle, and most physical environments are also highly dynamic and support a vast range of social practices that do not map directly into any immediate ubiquitous computing functionally. Identifying what is valuable to people is very hard and obviously leads to great uncertainty regarding the type of support needed and the type of resources needed to create such support. We have addressed the issues of system development through the adoption of a Crowdsourced software development model [13]. We have designed and developed Anywhere places, an open and flexible system support infrastructure for Ubiquitous Computing that is based on a balanced combination between global services and applications and situated devices. Evaluation, however, is still an open problem. The characteristics of ubiquitous computing environments make their evaluation very complex: there are no globally accepted metrics and it is very difficult to evaluate large-scale and long-term environments in real contexts. In this paper, we describe a first proposal of an hybrid 3D simulated prototype of Anywhere places that combines simulated and real components to generate a mixed reality which can be used to assess the envisaged ubiquitous computing environments [17].
Resumo:
[Excerpt] The advantages resulting from the use of numerical modelling tools to support the design of processing equipment are almost consensual. The design of calibration systems in profile extrusion is not an exception . H owever , the complex geome tries and heat exchange phenomena involved in this process require the use of numerical solvers able to model the heat exchange in more than one domain ( calibrator and polymer), the compatibilization of the heat transfer at the profile - calibrator interface and with the ability to deal with complex geometries. The combination of all these features is usually hard to find in commercial software. Moreover , the dimension of the meshes required to ob tain accurate results, result in computational times prohibitive for industrial application. (...)
Resumo:
Printed electronics represent an alternative solution for the manufacturing of low-temperature and large area flexible electronics. The use of inkjet printing is showing major advantages when compared to other established printing technologies such as, gravure, screen or offset printing, allowing the reduction of manufacturing costs due to its efficient material usage and the direct-writing approach without requirement of any masks. However, several technological restrictions for printed electronics can hinder its application potential, e.g. the device stability under atmospheric or even more stringent conditions. Here, we study the influence of specific mechanical, chemical, and temperature treatments usually appearing in manufacturing processes for textiles on the electrical performance of all-inkjet-printed organic thin-film transistors (OTFTs). Therefore, OTFTs where manufactured with silver electrodes, a UV curable dielectric, and 6,13-bis(triisopropylsilylethynyl) pentance (TIPS-pentacene) as the active semiconductor layer. All the layers were deposited using inkjet printing. After electrical characterization of the printed OTFTs, a simple encapsulation method was applied followed by the degradation study allowing a comparison of the electrical performance of treated and not treated OTFTs. Industrial calendering, dyeing, washing and stentering were selected as typical textile processes and treatment methods for the printed OTFTs. It is shown that the all-inkjet-printed OTFTs fabricated in this work are functional after their submission to the textiles processes but with degradation in the electrical performance, exhibiting higher degradation in the OTFTs with shorter channel lengths (L=10 μm).