996 resultados para PHYSICS, MATHEMATICAL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also discussed. © 2003 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My thesis falls within the framework of physics education and teaching of mathematics. The objective of this report was made possible by using geometrical (in mathematics) and qualitative (in physics) problems. We have prepared four (resp. three) open answer exercises for mathematics (resp. physics). The test batch has been selected across two different school phases: end of the middle school (third year, 8\textsuperscript{th} grade) and beginning of high school (second and third year, 10\textsuperscript{th} and 11\textsuperscript{th} grades respectively). High school students achieved the best results in almost every problem, but 10\textsuperscript{th} grade students got the best overall results. Moreover, a clear tendency to not even try qualitative problems resolution has emerged from the first collection of graphs, regardless of subject and grade. In order to improve students' problem-solving skills, it is worth to invest on vertical learning and spiral curricula. It would make sense to establish a stronger and clearer connection between physics and mathematical knowledge through an interdisciplinary approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the concept of piezoaeroelasticity for energy harvesting. The focus is placed on mathematical modeling and experimental validations of the problem of generating electricity at the flutter boundary of a piezoaeroelastic airfoil. An electrical power output of 10.7 mW is delivered to a 100 k load at the linear flutter speed of 9.30 m/s (which is 5.1% larger than the short-circuit flutter speed). The effect of piezoelectric power generation on the linear flutter speed is also discussed and a useful consequence of having nonlinearities in the system is addressed. (C) 2010 American Institute of Physics. [doi:10.1063/1.3427405]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem (R)) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm(2)) at a constant fluence rate of 250 mW/cm(2) and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (psi) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in psi and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes a simplified mathematical model to describe the processes occurring in an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater. The reactor, subjected to rising organic loading rates, contained biomass immobilized cubic polyurethane foam matrices, and was operated at 32 degrees C +/- 2 degrees C, using 24-h batch cycles. In the adaptation period, the reactor was fed with synthetic substrate for 46 days and was operated without agitation. Whereas agitation was raised to 500 rpm, the organic loading rate (OLR) rose from 0.3 g chemical oxygen demand (COD) . L(-1) . day(-1) to 1.2 g COD . L(-1) . day(-1). The ASBBR was fed fat-rich wastewater (dairy wastewater), in an operation period lasting for 116 days, during which four operational conditions (OCs) were tested: 1.1 +/- 0.2 g COD . L(-1) . day(-1) (OC1), 4.5 +/- 0.4 g COD . L(-1) . day(-1) (OC2), 8.0 +/- 0.8 g COD . L(-1) . day(-1) (OC3), and 12.1 +/- 2.4 g COD . L(-1) . day(-1) (OC4). The bicarbonate alkalinity (BA)/COD supplementation ratio was 1:1 at OC1, 1:2 at OC2, and 1:3 at OC3 and OC4. Total COD removal efficiencies were higher than 90%, with a constant production of bicarbonate alkalinity, in all OCs tested. After the process reached stability, temporal profiles of substrate consumption were obtained. Based on these experimental data a simplified first-order model was fit, making possible the inference of kinetic parameters. A simplified mathematical model correlating soluble COD with volatile fatty acids (VFA) was also proposed, and through it the consumption rates of intermediate products as propionic and acetic acid were inferred. Results showed that the microbial consortium worked properly and high efficiencies were obtained, even with high initial substrate concentrations, which led to the accumulation of intermediate metabolites and caused low specific consumption rates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existence of a reversed magnetic shear in tokamaks improves the plasma confinement through the formation of internal transport barriers that reduce radial particle and heat transport. However, the transport poloidal profile is much influenced by the presence of chaotic magnetic field lines at the plasma edge caused by external perturbations. Contrary to many expectations, it has been observed that such a chaotic region does not uniformize heat and particle deposition on the inner tokamak wall. The deposition is characterized instead by structured patterns called magnetic footprints, here investigated for a nonmonotonic analytical plasma equilibrium perturbed by an ergodic limiter. The magnetic footprints appear due to the underlying mathematical skeleton of chaotic magnetic field lines determined by the manifold tangles. For the investigated edge safety factor ranges, these effects on the wall are associated with the field line stickiness and escape channels due to internal island chains near the flux surfaces. Comparisons between magnetic footprints and escape basins from different equilibrium and ergodic limiter characteristic parameters show that highly concentrated magnetic footprints can be avoided by properly choosing these parameters. (c) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relativistic heavy ion program developed at RHIC and now at LHC motivated a deeper study of the properties of the quark-gluon plasma (QGP) and, in particular, the study of perturbations in this kind of plasma. We are interested on the time evolution of perturbations in the baryon and energy densities. If a localized pulse in baryon density could propagate throughout the QGP for long distances preserving its shape and without loosing localization, this could have interesting consequences for relativistic heavy ion physics and for astrophysics. A mathematical way to prove that this can happen is to derive (under certain conditions) from the hydrodynamical equations of the QGP a Korteveg-de Vries (KdV) equation. The solution of this equation describes the propagation of a KdV soliton. The derivation of the KdV equation depends crucially on the equation of state (EOS) of the QGP. The use of the simple MIT bag model EOS does not lead to KdV solitons. Recently we have developed an EOS for the QGP which includes both perturbative and nonperturbative corrections to the MIT one and is still simple enough to allow for analytical manipulations. With this EOS we were able to derive a KdV equation for the cold QGP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the transition amplitude for a particle moving in a space with two times and D space dimensions having an Sp(2, R) local symmetry and an SO(D, 2) rigid symmetry. It was obtained from the BRST-BFV quantization with a unique gauge choice. We show that by constraining the initial and final points of this amplitude to lie on some hypersurface of the D + 2 space the resulting amplitude reproduces well-known systems in lower dimensions. This work provides an alternative way to derive the effects of two-time physics where all the results come from a single transition amplitude.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-angle grain boundary migration is predicted during geometric dynamic recrystallization (GDRX) by two types of mathematical models. Both models consider the driving pressure due to curvature and a sinusoidal driving pressure owing to subgrain walls connected to the grain boundary. One model is based on the finite difference solution of a kinetic equation, and the other, on a numerical technique in which the boundary is subdivided into linear segments. The models show that an initially flat boundary becomes serrated, with the peak and valley migrating into both adjacent grains, as observed during GDRX. When the sinusoidal driving pressure amplitude is smaller than 2 pi, the boundary stops migrating, reaching an equilibrium shape. Otherwise, when the amplitude is larger than 2 pi, equilibrium is never reached and the boundary migrates indefinitely, which would cause the protrusions of two serrated parallel boundaries to impinge on each other, creating smaller equiaxed grains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiphase deterministic mathematical model was implemented to predict the formation of the grain macrostructure during unidirectional solidification. The model consists of macroscopic equations of energy, mass, and species conservation coupled with dendritic growth models. A grain nucleation model based on a Gaussian distribution of nucleation undercoolings was also adopted. At some solidification conditions, the cooling curves calculated with the model showed oscillations (""wiggles""), which prevented the correct prediction of the average grain size along the structure. Numerous simulations were carried out at nucleation conditions where the oscillations are absent, enabling an assessment of the effect of the heat transfer coefficient on the average grain size and columnar-to-equiaxed transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic relations between the solubility of a protein and the solution pH are presented in this work. The hypotheses behind the development are that the protein chemical potential in liquid phase can be described by Henry`s law and that the solid-liquid equilibrium is established only between neutral molecules. The mathematical development results in an analytical expression of the solubility curve, as a function of the ionization equilibrium constants, the pH and the solubility at the isoelectric point. It is shown that the same equation can be obtained either by directly calculating the fraction of neutral protein molecules or by integrating the curve of the protein average charge. The methodology was successfully applied to the description of the solubility of porcine insulin as a function of pH at three different temperatures and of bovine beta-lactoglobulin at four different ionic strengths. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simplest model of three coupled Bose-Einstein condensates is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean-field approximation. This semiclassical analysis, using system symmetries, shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points, and our analysis shows that the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, and undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays a dynamical transition. The quantum case has collapse and revival sequences superimposed on the semiclassical dynamics, reflecting the underlying discreteness of the spectrum. Nonzero circular current states are also demonstrated as one of the higher-dimensional effects displayed in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.