914 resultados para PARTICULATE AIR-POLLUTION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Motor vehicles are major emitters of gaseous and particulate pollution in urban areas, and exposure to particulate pollution can have serious health effects, ranging from respiratory and cardiovascular disease to mortality. Motor vehicle tailpipe particle emissions span a broad size range from 0.003-10µm, and are measured as different subsets of particle mass concentrations or particle number count. However, no comprehensive inventories currently exist in the international published literature covering this wide size range. This paper presents the first published comprehensive inventory of motor vehicle tailpipe particle emissions covering the full size range of particles emitted. The inventory was developed for urban South-East Queensland by combining two techniques from distinctly different disciplines, from aerosol science and transport modelling. A comprehensive set of particle emission factors were combined with traffic modelling, and tailpipe particle emissions were quantified for particle number (ultrafine particles), PM1, PM2.5 and PM10 for light and heavy duty vehicles and buses. A second aim of the paper involved using the data derived in this inventory for scenario analyses, to model the particle emission implications of different proportions of passengers travelling in light duty vehicles and buses in the study region, and to derive an estimate of fleet particle emissions in 2026. It was found that heavy duty vehicles (HDVs) in the study region were major emitters of particulate matter pollution, and although they contributed only around 6% of total regional vehicle kilometres travelled, they contributed more than 50% of the region’s particle number (ultrafine particles) and PM1 emissions. With the freight task in the region predicted to double over the next 20 years, this suggests that HDVs need to be a major focus of mitigation efforts. HDVs dominated particle number (ultrafine particles) and PM1 emissions; and LDV PM2.5 and PM10 emissions. Buses contributed approximately 1-2% of regional particle emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emissions from airport operations are of significant concern because of their potential impact on local air quality and human health. The currently limited scientific knowledge of aircraft emissions is an important issue worldwide, when considering air pollution associated with airport operation, and this is especially so for ultrafine particles. This limited knowledge is due to scientific complexities associated with measuring aircraft emissions during normal operations on the ground. In particular this type of research has required the development of novel sampling techniques which must take into account aircraft plume dispersion and dilution as well as the various particle dynamics that can affect the measurements of the aircraft engine plume from an operational aircraft. In order to address this scientific problem, a novel mobile emission measurement method called the Plume Capture and Analysis System (PCAS), was developed and tested. The PCAS permits the capture and analysis of aircraft exhaust during ground level operations including landing, taxiing, takeoff and idle. The PCAS uses a sampling bag to temporarily store a sample, providing sufficient time to utilize sensitive but slow instrumental techniques to be employed to measure gas and particle emissions simultaneously and to record detailed particle size distributions. The challenges in relation to the development of the technique include complexities associated with the assessment of the various particle loss and deposition mechanisms which are active during storage in the PCAS. Laboratory based assessment of the method showed that the bag sampling technique can be used to accurately measure particle emissions (e.g. particle number, mass and size distribution) from a moving aircraft or vehicle. Further assessment of the sensitivity of PCAS results to distance from the source and plume concentration was conducted in the airfield with taxiing aircraft. The results showed that the PCAS is a robust method capable of capturing the plume in only 10 seconds. The PCAS is able to account for aircraft plume dispersion and dilution at distances of 60 to 180 meters downwind of moving a aircraft along with particle deposition loss mechanisms during the measurements. Characterization of the plume in terms of particle number, mass (PM2.5), gaseous emissions and particle size distribution takes only 5 minutes allowing large numbers of tests to be completed in a short time. The results were broadly consistent and compared well with the available data. Comprehensive measurements and analyses of the aircraft plumes during various modes of the landing and takeoff (LTO) cycle (e.g. idle, taxi, landing and takeoff) were conducted at Brisbane Airport (BNE). Gaseous (NOx, CO2) emission factors, particle number and mass (PM2.5) emission factors and size distributions were determined for a range of Boeing and Airbus aircraft, as a function of aircraft type and engine thrust level. The scientific complexities including the analysis of the often multimodal particle size distributions to describe the contributions of different particle source processes during the various stages of aircraft operation were addressed through comprehensive data analysis and interpretation. The measurement results were used to develop an inventory of aircraft emissions at BNE, including all modes of the aircraft LTO cycle and ground running procedures (GRP). Measurements of the actual duration of aircraft activity in each mode of operation (time-in-mode) and compiling a comprehensive matrix of gas and particle emission rates as a function of aircraft type and engine thrust level for real world situations was crucial for developing the inventory. The significance of the resulting matrix of emission rates in this study lies in the estimate it provides of the annual particle emissions due to aircraft operations, especially in terms of particle number. In summary, this PhD thesis presents for the first time a comprehensive study of the particle and NOx emission factors and rates along with the particle size distributions from aircraft operations and provides a basis for estimating such emissions at other airports. This is a significant addition to the scientific knowledge in terms of particle emissions from aircraft operations, since the standard particle number emissions rates are not currently available for aircraft activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Objective: As global warming continues, the frequency, intensity and duration of heatwaves are likely to increase. However, a heatwave is unlikely to be defined uniformly because acclimatisation plays a significant role in determining the heat-related impact. This study investigated how to best define a heatwave in Brisbane, Australia. Methods: Computerised datasets on daily weather, air pollution and health outcomes between 1996 and 2005 were obtained from pertinent government agencies. Paired t-tests and case-crossover analyses were performed to assess the relationship between heatwaves and health outcomes using different heatwave definitions. Results: The maximum temperature was as high as 41.5°C with a mean maximum daily temperature of 26.3°C. None of the five commonly-used heatwave definitions suited Brisbane well on the basis of the health effects of heatwaves. Additionally, there were pros and cons when locally-defined definitions were attempted using either a relative or absolute definition for extreme temperatures. Conclusion: The issue of how to best define a heatwave is complex. It is important to identify an appropriate definition of heatwave locally and to understand its health effects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stroke is a leading cause of disability and death. This study evaluated the association between temperature variation and emergency admissions for stroke in Brisbane, Australia. Daily emergency admissions for stroke, meteorologic and air pollution data were obtained for the period of January 1996 to December 2005. The relative risk of emergency admissions for stroke was estimated with a generalized estimating equations (GEE) model. For primary intracerebral hemorrhage (PIH) emergency admissions, the average daily PIH for the group aged < 65 increased by 15% (95% Confidence Interval (CI): 5, 26%) and 12% (95% CI: 2, 22%) for a 1°C increase in daily maximum temperature and minimum temperature in summer, respectively, after controlling for potential confounding effects of humidity and air pollutants. For ischemic stroke (IS) emergency admissions, the average daily IS for the group aged ≥ 65 decreased by 3% (95% CI: -6, 0%) for a 1°C increase in daily maximum temperature in winter after adjustment for confounding factors. Temperature variation was significantly associated with emergency admissions for stroke, and its impact varied with different type of stroke. Health authorities should pay greater attention to possible increasing emergency care for strokes when temperature changes, in both summer and winter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper examines whether there was an excess of deaths and the relative role of temperature and ozone in a heatwave during 7–26 February 2004 in Brisbane, Australia, a subtropical city accustomed to warm weather. The data on daily counts of deaths from cardiovascular disease and non-external causes, meteorological conditions, and air pollution in Brisbane from 1 January 2001 to 31 October 2004 were supplied by the Australian Bureau of Statistics, Australian Bureau of Meteorology, and Queensland Environmental Protection Agency, respectively. The relationship between temperature and mortality was analysed using a Poisson time series regression model with smoothing splines to control for nonlinear effects of confounding factors. The highest temperature recorded in the 2004 heatwave was 42°C compared with the highest recorded temperature of 34°C during the same periods of 2001–2003. There was a significant relationship between exposure to heat and excess deaths in the 2004 heatwave estimated increase in non-external deaths: 75 [(95% confidence interval, CI: 11–138; cardiovascular deaths: 41 (95% CI: −2 to 84)]. There was no apparent evidence of substantial short-term mortality displacement. The excess deaths were mainly attributed to temperature but exposure to ozone also contributed to these deaths.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The multi-criteria decision making methods, Preference METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA), and the two-way Positive Matrix Factorization (PMF) receptor model were applied to airborne fine particle compositional data collected at three sites in Hong Kong during two monitoring campaigns held from November 2000 to October 2001 and November 2004 to October 2005. PROMETHEE/GAIA indicated that the three sites were worse during the later monitoring campaign, and that the order of the air quality at the sites during each campaign was: rural site > urban site > roadside site. The PMF analysis on the other hand, identified 6 common sources at all of the sites (diesel vehicle, fresh sea salt, secondary sulphate, soil, aged sea salt and oil combustion) which accounted for approximately 68.8 ± 8.7% of the fine particle mass at the sites. In addition, road dust, gasoline vehicle, biomass burning, secondary nitrate, and metal processing were identified at some of the sites. Secondary sulphate was found to be the highest contributor to the fine particle mass at the rural and urban sites with vehicle emission as a high contributor to the roadside site. The PMF results are broadly similar to those obtained in a previous analysis by PCA/APCS. However, the PMF analysis resolved more factors at each site than the PCA/APCS. In addition, the study demonstrated that combined results from multi-criteria decision making analysis and receptor modelling can provide more detailed information that can be used to formulate the scientific basis for mitigating air pollution in the region.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: There is no global definition of a heatwave because local acclimatisation and adaptation influence the impact of extreme heat. Even at a local level there can be multiple heatwave definitions, based on varying temperature levels or time periods. We investigated the relationship between heatwaves and health outcomes using ten different heatwave definitions in Brisbane, Australia. ---------- Methodology/Principal Findings: We used daily data on climate, air pollution, and emergency hospital admissions in Brisbane between January 1996 and December 2005; and mortality between January 1996 and November 2004. Case-crossover analyses were used to assess the relationship between each of the ten heatwave definitions and health outcomes. During heatwaves there was a statistically significant increase in emergency hospital admissions for all ten definitions, with odds ratios ranging from 1.03 to 1.18. A statistically significant increase in the odds ratios of mortality was also found for eight definitions. The size of the heat-related impact varied between definitions.---------- Conclusions/Significance Even a small change in the heatwave definition had an appreciable effect on the estimated health impact. It is important to identify an appropriate definition of heatwave locally and to understand its health effects in order to develop appropriate public health intervention strategies to prevent and mitigate the impact of heatwaves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A letter in response to an article by David Rojas-Rueda, Audrey de Nazelle, Marko Tainio, Mark J Nieuwenhuijsen, The health risks and benefits of cycling in urban environments compared with car use: health impact assessment study. BMJ 2011;343:doi:10.1136/bmj.d4521 (Published 4 August 2011) This paper sets out to compare the health benefits of the Bicing scheme (Barcelona's public bicycle share scheme) with possible risks associated with increased bicycle riding. The key variables used by the researchers include physical activity, exposure to air pollution and road traffic injury. The authors rightly identify that although traffic congestion is often a major motivator behind the establishment of public bicycle share schemes (PBSS), the health benefits may well be the largest single benefit of such schemes. Certainly PBSS appear to be one of the most effective methods of increasing the number of bicycle trips across a population, providing additional transport options and improving awareness of the possibilities bicycles offer urban transport systems. Overall, the paper is a useful addition to the literature, in that it has attempted to assess the health benefits of a large scale PBSS and weighed these against potential risks related to cyclists exposure to air pollution and road traffic injuries. Unfortunately a fundamentally flawed assumption related to the proportion of Bicing trips replacing car journeys invalidates the results of this paper. A future paper with up to date data would create a significant contribution to this emerging area within the field of sustainable transport.