773 resultados para Olive.
Resumo:
The objective of this study was to determine the presence of Malassezia spp. in the external ear canal of cats with and without otitis. Forty-five animals were studied, 20 with and 25 without otitis externa (OE). Cerumen or secretion from external ear canal samples was cultured on modified Mycosel agar and sterile olive oil was added to the surface of the medium before specimen seeding. The isolates were analysed for macro- and micromorphology and identified by catalase tests and on the basis of growth on Tween 20, 40, 60 and 80. Malassezia spp. were isolated from 15 out of 20 (75%) animals with otitis and from 7 out of 25 (28%) cats without OE; the difference between the two groups was statistically significant (P <= 0.05). Malassezia pachydermatis and M. sympodialis were isolated from 60% (12/20) and 40% (8/20) of cats with otitis, respectively, with no significant difference in the frequency of isolation between the two species. In the microflora of the healthy ear canal M pachydermatis was significantly more common (6/25, 24%) than M sympodialis (1/25, 4%). The present investigation confirms that M sympodialis can also act as an actiological agent of feline OE, and if commercial veterinary laboratories do not use media with added lipids for the isolation of Malassezia spp., this might lead to false-negative results.
Resumo:
After treatment lipophilic pesticides tend to diffuse by penetrating the epicuticular wax of fruits. In this way, solar radiation only acts on pesticide molecules after passing through the waxes. The effect of epicuticular waxes of three fruits (orange, nectarine, and olive) on the photodegradation of fenthion was studied. The waxes affected the photodegradation process of fenthion. The decay rate of fenthion increased in the presence of orange and nectarine waxes, while it decreased when olive wax was used. In all waxes, the transformation of fenthion produced mainly fenthion sulfoxide and low amounts of fenthion sulfone. In orange wax, 50% of the initial fenthion was transformed into unknown compounds. In nectarine wax, fenthion was degraded stoichiometrically into fenthion sulfoxide and fenthion sulfone. In olive wax, the photodegradation of fenthion yielded about 80% of fenthion sulfoxide.
Resumo:
The aim of this study was to know the yeast biodiversity from fresh olive (Olea europaea L.) fruits, olive paste (crush olives) and olive pomace (solid waste) from Arbequina and Cornicabra varieties. Yeasts were isolated from fruits randomly harvested at various olive groves in the region of Castilla La Mancha (Spain). Olive paste and pomace, a byproduct of the processing of this raw material, were also collected in sterile flasks from different oil mills. Molecular identification methodology used included comparison of polymerase chain reaction (PCR) amplicons of their 5.8S rRNA gene and internal transcribed spacers ITS1 and ITS2 followed by restriction pattern analysis (RFLP). For some species, sequence analysis of the 5.8S rDNA gene was necessary. The results were compared to sequences held in public databases (BLAST). These techniques allowed to identify fourteen different species of yeasts, belonging to seven different genera (Zygosaccharomyces, Pichia, Lachancea, Kluyveromyces, Saccharomyces, Candida, Torulaspora) from the 108 yeast isolates. Species diversity was thus considerable: Pichia caribbica, Zygosaccharomyces fermentati (Lachancea fermentati) and Pichia holstii (Nakazawaea holstii) were the most commonly isolated species, followed by Pichia mississippiensis, Lachancea sp., Kluyveromyces thermotolerans and Saccharomyces rosinii. The biotechnological properties of these isolates, was also studied. For this purpose, the activity of various enzymes (beta-glucosidase, beta-glucanase, carboxymethylcellulase, polygalacturonase, peroxidase and lipase) was evaluated. It was important that none of species showed lipase activity, a few had cellulase and polygalacturonase activities and the majority of them presented beta-glucanase, beta-glucosidase and peroxidase activities. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice-versa. The method is based on measuring the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. Viscosity measurements were made in the range from 1 to 3.5MHz at 22.5°C for automotive oil (SAE40) and at 15°C for olive oil. Moreover, measurements of the olive oil were also conducted in the range from 15 to 30°C at 3.5MHz. The experimental results agree with those provided by a rotational viscometer. © 2006 IEEE.
Resumo:
The anthracyclines constitute a group of drugs widely used for the treatment of a variety of human tumors. However, the development of irreversible cardiotoxicity has limited their use. Anthracycline-induced cardiotoxicity can persist for years with no clinical symptoms. However, its prognosis becomes poor after the development of overt heart failure, possibly even worse than ischemic or idiopathic dilated cardiomyopathies. Due to the successful action of anthracyclines as chemotherapic agents, several strategies have been tried to prevent/ attenuate their side effects. Although anthracycline-induced injury appears to be multifactorial, a common denominator among most of the proposed mechanisms is cellular damage mediated by reactive oxygen species. However, it remains controversial as to whether antioxidants can prevent such side effects given that different mechanisms may be involved in acute versus chronic toxicity. The present review applies a multisided approach to the critical evaluation of various hypotheses proposed over the last decade on the role of oxidative stress in cardiotoxicity induced by doxorubicin, the most used anthracycline agent. The clinical diagnosis and treatment is also discussed. © 2008 Bentham Science Publishers Ltd.
Resumo:
Most of the problems of endodontic origin have a bacterial etiological agent. Thus, there is a continued interest in seeking more effective chemical substances that can replace the camphorated paramonochiorophenol or antibiotics as intracanal medicaments. Among the possible substances, ozone has some interesting biological characteristics: bactericidal action, debriding effect, angiogenesis stimulation capacity and high oxidizing power. The purpose of this study was to chemically evaluate the presence of ozone in sunflower, castor, olive and almond oil, as well as in propylene glycol and byproducts of ozonation, such as formaldehyde. These compounds were ozonized, inserted into empty and sterile vials, and analyzed by testing the reaction between ozone and indigo, for determining the presence of ozone, and subjected to the chromotropic acid test for determining the presence of formaldehyde. It was observed complete absence of ozone in all samples tested and presence of formaldehyde. The bactericidal and healing action of ozonized oils could be attributed to products formed by the ozonation of mineral oils, such as formaldehyde, not to the ozone itself.
Resumo:
Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries. © 2012 Springer-Verlag Berlin Heidelberg and the University of Milan.
Resumo:
The soluble lipase from Pseudomonas fluorescens (PFL) forms bimolecular aggregates in which the hydrophobic active centers of the enzyme monomers are in close contact. This bimolecular aggregate could be immobilized by multipoint covalent linkages on glyoxyl supports at pH 8.5. The monomer of PFL obtained by incubation of the soluble enzyme in the presence of detergent (0.5% TRITON X-100) could not be immobilized under these conditions. The bimolecular aggregate has two amino terminal residues in the same plane. A further incubation of the immobilized derivative under more alkaline conditions (e.g., pH 10.5) allows a further multipoint attachment of lysine (Lys) residues located in the same plane as the amino terminal residues. Monomeric PFL was immobilized at pH 10.5 in the presence of 0.5% TRITON X-100. The properties of both PFL derivatives were compared. In general, the bimolecular derivatives were more active, more selective and more stable both in water and in organic solvents than the monomolecular ones. The bimolecular derivative showed twice the activity and a much higher selectivity (100 versus 20) for the hydrolysis of R,S-2-hydroxy-4-phenylbutyric acid ethyl ester (HPBEt) in aqueous media at pH 5.0 compared to the monomeric derivative. In experiments measuring thermal inactivation at 75 °C, the bimolecular derivative was 5-fold more stable than the monomeric derivative (and 50-fold more stable than a one-point covalently immobilized PFL derivative), and it had a half-life greater than 4 h. In organic solvents (cyclohexane and tert-amyl alcohol), the bimolecular derivative was much more stable and more active than the monomeric derivative in catalyzing the transesterification of olive oil with benzyl alcohol. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
Lipase production by Trichoderma harzianum was evaluated in submerged fermentation (SF) and solid-state fermentation (SSF) using a variety of agro-industrial residues. Cultures in SF showed the highest activity (1.4 U/mL) in medium containing 0.5 % (w/v) yeast extract, 1 % (v/v) olive oil and 2.5 C:N ratio. This paper is the first to report lipase production by T. harzianum in SSF. A 1:2 mixture of castor oil cake and sugarcane bagasse supplemented with 1 % (v/w) olive oil showed the best results among the cultures in SSF (4 U/g ds). Lipolytic activity was stable in a slightly acidic to neutral pH, maintaining 50 % activity after 30 min at 50 C. Eighty percent of the activity remained after 1 h in 25 % (v/v) methanol, ethanol, isopropanol or acetone. Activity was observed with vegetable oils (olive, soybean, corn and sunflower) and long-chain triacylglycerols (triolein), confirming the presence of a true lipase. The results of this study are promising because they demonstrate an enzyme with interesting properties for application in catalysis produced by fermentation at low cost. © 2012 Springer-Verlag and the University of Milan.
Resumo:
Sofrito is a key component of the Mediterranean diet, a diet that is strongly associated with a reduced risk of cardiovascular events. In this study, different Mediterranean sofritos were analysed for their content of polyphenols and carotenoids after a suitable work-up extraction procedure using liquid chromatography/electrospray ionisation-linear ion trap quadrupole-Orbitrap-mass spectrometry (LC/ESI-LTQ-Orbitrap- MS) and liquid chromatography/electrospray ionisation tandem triple quadrupole mass spectrometry (LC/ESI-MS-MS). In this way, 40 polyphenols (simple phenolic and hydroxycinnamoylquinic acids, and flavone, flavonol and dihydrochalcone derivatives) were identified with very good mass accuracy (<2 mDa), and confirmed by accurate mass measurements in MS and MS2 modes. The high-resolution MS analyses revealed the presence of polyphenols never previously reported in Mediterranean sofrito. The quantification levels of phenolic and carotenoid compounds led to the distinction of features among different Mediterranean sofritos according to the type of vegetables (garlic and onions) or olive oil added for their production. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR