967 resultados para Oaxaca decomposition
Resumo:
Density functional theory calculations were carried out to examine the mechanism of ethanol decomposition on the Rh(211) surface. We found that there are two possible decomposition pathways: (1) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(3)CO -> CH(3) + CO -> CH(2) + CO -> CH + CO -> C + CO and (2) CH(3)CH(2)OH -> CH(3)CHOH -> CH(3)COH -> CH(2)COH -> CHCOH -> CHCO -> CH + CO -> C + CO. Both pathways have a common intermediate of CH(3)COH, and the key step is the formation of CH(3)CHOH species. According to our calculations, the mechanism of ethanol decomposition on Rh(211) is totally different from that on Rh(111): the reaction proceeds via CH(3)COH rather than an oxametallacycle species (-CH(2)CH(2)O- for Rh( 111)), which implies that the decomposition process is structure sensitive. Further analyses on electronic structures revealed that the preference of the initial C(alpha)-H path is mainly due to the significant reduction of d-electron energy in the presence of the transition state (TS) complex, which may stabilize the TS-surface system. The present work first provides a clear picture for ethanol decomposition on stepped Rh(211), which is an important first step to completely understand the more complicated reactions, like ethanol steam reforming and electrooxidation.
Resumo:
Demand Response (DR) algorithms manipulate the energy consumption schedules of controllable loads so as to satisfy grid objectives. Implementation of DR algorithms using a centralised agent can be problematic for scalability reasons, and there are issues related to the privacy of data and robustness to communication failures. Thus it is desirable to use a scalable decentralised algorithm for the implementation of DR. In this paper, a hierarchical DR scheme is proposed for Peak Minimisation (PM) based on Dantzig-Wolfe Decomposition (DWD). In addition, a Time Weighted Maximisation option is included in the cost function which improves the Quality of Service for devices seeking to receive their desired energy sooner rather than later. The paper also demonstrates how the DWD algorithm can be implemented more efficiently through the calculation of the upper and lower cost bounds after each DWD iteration.
Resumo:
Ectomycorrhizal fungi and saprotrophic microorganisms coexist and interact in the mycorrhizosphere. We review what is known regarding these interactions and how they may influence processes such as ectomycorrhiza formation, mycelial growth, and the dynamics of carbon movement to and within the rhizosphere. Particular emphasis is placed on the potential importance of interactions in decomposition of soil organic matter and degradation of persistant organic pollutants in soil. While our knowledge is currently fairly limited, it seems likely that interactions have profound effects on mycorrhizosphere processes. More extensive research is warranted to provide novel insights into mycorrhizosphere ecology and to explore the potential for manipulating the ectomycorrhizosphere environment for biotechnological purposes.
Resumo:
Kinetic demixing and decomposition were studied on three La0.6Sr0.4Co0.2Fe0.8O3- δ oxygen-separation hollow fibre membrane modules, which were operated under a 0.21/0.009bar oxygen partial pressure difference at 950°C for 1128, 3672 and 5512h, respectively. The post-operation membranes were characterized by Secondary Ion Mass Spectrometry, Scanning Electronic Microscope, Energy Dispersive Spectrum and X-ray Diffraction. The occurrence of kinetic demixing and decomposition was confirmed through the microstructural evolution of the membranes. Secondary-phase grains were found on the air-side surface of the membranes after the long-term operation and Co and Fe enrichment as well as La depletion was found on the surface and in the bulk at the air side. Cation diffusivities were found to be in the order Co>Fe>Sr>La. Kinetic demixing and decomposition rates of the membranes at the air side were found to be self-accelerating with time; the role of A-site deficiency in the perovskite lattice in the bulk near the air side surface is implicated in the mechanism. The oxygen permeability was not affected by the kinetic demixing and decomposition of the material during long-term operation (up to 5512h), however, we may expect permeability to be affected by secondary phase formation on the air-side surface at even longer operational times. © 2010 Elsevier B.V.
Resumo:
In this study, we investigate an adaptive decomposition and ordering strategy that automatically divides examinations into difficult and easy sets for constructing an examination timetable. The examinations in the difficult set are considered to be hard to place and hence are listed before the ones in the easy set in the construction process. Moreover, the examinations within each set are ordered using different strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy set. During the construction process, examinations that cannot be scheduled are identified as the ones causing infeasibility and are moved forward in the difficult set to ensure earlier assignment in subsequent attempts. On the other hand, the examinations that can be scheduled remain in the easy set.
Within the easy set, a new subset called the boundary set is introduced to accommodate shuffling strategies to change the given ordering of examinations. The proposed approach, which incorporates different ordering and shuffling strategies, is explored on the Carter benchmark problems. The empirical results show that the performance of our algorithm is broadly comparable to existing constructive approaches.
Resumo:
Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
The purpose of this study was to determine the effect of increased soil moisture levels on
the decomposition processes in a peat-extracted bog. Field experiments, in which soil
moisture levels were manipulated, were conducted using 320 microcosms in the
Wainfleet Bog from May 2002 to November 2004. Decomposition was measured using
litter bags and monitoring the abundance of macro invertebrate decomposers known as
Collembola. Litter bags containing wooden toothpicks (n=2240), filter paper (n=480)
and Betula pendula leaves (n=40) were buried in the soil and removed at regular time
intervals up to one year. The results of the litter bag studies demonstrated a significant
reduction of the decomposition of toothpicks (p<0.001), filter paper (p<0.001), and
Betula pendula leaves (p
Resumo:
This project is focussed on the thermsLl decomposition of t-butyl hydroperoxide and sec-butyl hydroperoxide at 120°C to 160°C in three alcohol solvents. These are methanol, ethajiol and isopropyl alcohol. The aim of the project was to examine the process of induced decomposition. Thermal decomposition of t-hutyl hydroperoxide and sec-butyl hydroperoxide indicate that these reactions have first-order kinetics with activation energies on the order of 20 to 28 K cal/mole, Styrene was used as a free radical trap to inhibit the induced decomposition. The results permitted calculation of how much induced decomposition occurred in its absence. The experimental resvilts indicate that the induced decomposition is important for t-butyl hydroperoxide in alcohol solvents, as shown by both the reaction rate suid product studies. But sec-butyl hydroperoxide results show that the concerted mechanism for the interaction of two sec-butylperoxy radicals occurs in addition to the induced decomposition. Di-sodium E.D,T.A. was added to reduce possible effects of trace transition metal ion .impurities. The result of this experiment were not as expected. The rate of hydroperoxide decomposition was about the same but was zero-order in hydroperoxide concentration.
Resumo:
Kinetics and product studies of the decompositions of allyl-t-butyl peroxide and 3-hydroperoxy- l-propene (allyl hydroperoxide ) in tolune were investigated. Decompositions of allyl-t-butyl peroxide in toluene at 130-1600 followed first order kinetics with an activation energy of 32.8 K.cals/mol and a log A factor of 13.65. The rates of decomposition were lowered in presence of the radical trap~methyl styrene. By the radical trap method, the induced decomposition at 1300 is shown to be 12.5%. From the yield of 4-phenyl-l,2- epoxy butane the major path of induced decomposition is shown to be via an addition mechanism. On the other hand, di-t-butYl peroxyoxalate induced decomposition of this peroxide at 600 proceeded by an abstraction mechanism. Induced decomposition of peroxides and hydroperoxides containing the allyl system is proposed to occur mainly through an addition mechanism at these higher temperatures. Allyl hydroperoxide in toluene at 165-1850 decomposes following 3/2 order kinetics with an Ea of 30.2 K.cals per mole and log A of 10.6. Enormous production of radicals through chain branching may explain these relatively low values of E and log A. The complexity of the reaction is indicated a by the formation of various products of the decomposition. A study of the radical attack of the hydro peroxide at lower temperatures is suggested as a further work to throw more light on the nature of decomposition of this hydroperoxide.
Resumo:
Re~tes artd pJ~oducts of tllerma]. d,ecom.position of sec-butyl peroxide at 110 - 150°C i.n four solvents h,ave been determined. The d,ecompos i tion vJas sb.o\'\Tn to be tlnlmolecl.llar wi tho energies of activation in toluene, benzene, and cyclohexane of 36 .7-+ 1.0, 33.2 +- 1..0, 33.t~) +.. 1.0 I'(:cal/mol respectively. The activation energy of thermal decomposition for the d,et.1terated peroxide was found to be 37.2 4:- 1.0 KC8:1/1TIol in toluene. A.bo1J.t 70 - 80/~ ol~ tJJ.e' pl~od.1..1CtS could, be explained by kn01rJ11 reactions of free allcoxy raclicals J and very littJ...e, i.f allY, disPl"Opox~tiol'lation of tll10 sec-butoxy radica.ls in t116 solvent cage could be detected. The oth,er 20 - 30% of the peroxide yielded H2 and metb.:'ll etb..yl 1{etol1e. Tl1.e yield. o:f H2 "'lIas unafJ:'ected by the nature or the viscosity of the solvent, but H2 was not formed when s-t1U202 lrJaS phctolyzed. in tolttene at 35°C nor 'tl!Jrl.en the peroxide 1;'JaS tl1.ermally o..ecoJnposed. in the gas p11ase. ~pC-Dideutero-~-butYlperoxide was prepared and decomposed in toluene at 110 - 150°C. The yield of D2 was about ·•e1ne same 248 the yield. of I{2 from s-Bu202, bU.t th.e rate of decomposition (at 135°C) 1iJas only 1/1.55 as fast. Ivlecl1.anisms fOl') J:1ydrogen produ.ction are discussed, but none satisfactorily explains all the evidence.
Resumo:
Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*