944 resultados para ONE-DIMENSIONAL MAPS
Resumo:
ABSTRACT This study aimed to evaluate the spatial dependence of physical attributes in a soil cultivated with Brachiaria grass. A 12-m regular sampling grid was established within an area of 3.500 m2. Thirty-five soil samples were collected at 0-30 cm depth for particle density, bulk density, texture and total porosity analysis. These data were evaluated using statistical methods of indicator kriging and the GS+ software. The GS+ software was used to develop three-dimensional maps and evaluate semivariograms. The spatial dependence was evaluated using experimental semivariograms. The analyzed attributes indicated the occurrence of spatial dependence when fit to the exponential model. Areas with higher porosity occurred in the regions with lower bulk densities and higher particle densities.
Resumo:
The paper is devoted to study specific aspects of heat transfer in the combustion chamber of compression ignited reciprocating internal combustion engines and possibility to directly measure the heat flux by means of Gradient Heat Flux Sensors (GHFS). A one – dimensional single zone model proposed by Kyung Tae Yun et al. and implemented with the aid of Matlab, was used to obtain approximate picture of heat flux behavior in the combustion chamber with relation to the crank angle. The model’s numerical output was compared to the experimental results. The experiment was accomplished by A. Mityakov at four stroke diesel engine Indenor XL4D. Local heat fluxes on the surface of cylinder head were measured with fast – response, high – sensitive GHFS. The comparison of numerical data with experimental results has revealed a small deviation in obtained heat flux values throughout the cycle and different behavior of heat flux curve after Top Dead Center.
Resumo:
This master’s thesis is devoted to study different heat flux measurement techniques such as differential temperature sensors, semi-infinite surface temperature methods, calorimetric sensors and gradient heat flux sensors. The possibility to use Gradient Heat Flux Sensors (GHFS) to measure heat flux in the combustion chamber of compression ignited reciprocating internal combustion engines was considered in more detail. A. Mityakov conducted an experiment, where Gradient Heat Flux Sensor was placed in four stroke diesel engine Indenor XL4D to measure heat flux in the combustion chamber. The results which were obtained from the experiment were compared with model’s numerical output. This model (a one – dimensional single zone model) was implemented with help of MathCAD and the result of this implementation is graph of heat flux in combustion chamber in relation to the crank angle. The values of heat flux throughout the cycle obtained with aid of heat flux sensor and theoretically were sufficiently similar, but not identical. Such deviation is rather common for this type of experiment.
Resumo:
The behavior of Petrov-Galerkin formulations for shallow water wave equations is evaluated numerically considering typical one-dimensional propagation problems. The formulations considered here use stabilizing operators to improve classical Galerkin approaches. Their advantages and disadvantages are pointed out according to the intrinsic time scale (free parameter) which has a particular importance in this kind of problem. The influence of the Courant number and the performance of the formulation in dealing with spurious oscillations are adressed.
Resumo:
The Mathematica system (version 4.0) is employed in the solution of nonlinear difusion and convection-difusion problems, formulated as transient one-dimensional partial diferential equations with potential dependent equation coefficients. The Generalized Integral Transform Technique (GITT) is first implemented for the hybrid numerical-analytical solution of such classes of problems, through the symbolic integral transformation and elimination of the space variable, followed by the utilization of the built-in Mathematica function NDSolve for handling the resulting transformed ODE system. This approach ofers an error-controlled final numerical solution, through the simultaneous control of local errors in this reliable ODE's solver and of the proposed eigenfunction expansion truncation order. For covalidation purposes, the same built-in function NDSolve is employed in the direct solution of these partial diferential equations, as made possible by the algorithms implemented in Mathematica (versions 3.0 and up), based on application of the method of lines. Various numerical experiments are performed and relative merits of each approach are critically pointed out.
Resumo:
In this work, we present the solution of a class of linear inverse heat conduction problems for the estimation of unknown heat source terms, with no prior information of the functional forms of timewise and spatial dependence of the source strength, using the conjugate gradient method with an adjoint problem. After describing the mathematical formulation of a general direct problem and the procedure for the solution of the inverse problem, we show applications to three transient heat transfer problems: a one-dimensional cylindrical problem; a two-dimensional cylindrical problem; and a one-dimensional problem with two plates.
Resumo:
This thesis presents a one-dimensional, semi-empirical dynamic model for the simulation and analysis of a calcium looping process for post-combustion CO2 capture. Reduction of greenhouse emissions from fossil fuel power production requires rapid actions including the development of efficient carbon capture and sequestration technologies. The development of new carbon capture technologies can be expedited by using modelling tools. Techno-economical evaluation of new capture processes can be done quickly and cost-effectively with computational models before building expensive pilot plants. Post-combustion calcium looping is a developing carbon capture process which utilizes fluidized bed technology with lime as a sorbent. The main objective of this work was to analyse the technological feasibility of the calcium looping process at different scales with a computational model. A one-dimensional dynamic model was applied to the calcium looping process, simulating the behaviour of the interconnected circulating fluidized bed reactors. The model incorporates fundamental mass and energy balance solvers to semi-empirical models describing solid behaviour in a circulating fluidized bed and chemical reactions occurring in the calcium loop. In addition, fluidized bed combustion, heat transfer and core-wall layer effects were modelled. The calcium looping model framework was successfully applied to a 30 kWth laboratory scale and a pilot scale unit 1.7 MWth and used to design a conceptual 250 MWth industrial scale unit. Valuable information was gathered from the behaviour of a small scale laboratory device. In addition, the interconnected behaviour of pilot plant reactors and the effect of solid fluidization on the thermal and carbon dioxide balances of the system were analysed. The scale-up study provided practical information on the thermal design of an industrial sized unit, selection of particle size and operability in different load scenarios.
Resumo:
Suomi tarvitsee menestyviä yrittäjiä, uusia yrityksiä, kasvuyrityksiä ja kansainvälistymistä. Yrittä-jyydelle asetetaankin suuria odotuksia. Suurin huomio yrittäjyyden tarkastelussa on kuitenkin keskittynyt liiketoimintojen kehittämiseen – sen sijaan omistajuuden ja yrittäjyyden yhteyttä ei ole juurikaan huomioitu. Tämän seurauksena myös omistajuuden vaikutusta yrityksen kehittymi-seen ja menestykseen on analysoitu vähän. Edistääkseen yrityksen kehittymistä, tulee omistuksen olla tavoitteellista. Omistamisen tavoittei-den tarkastelu on kuitenkin harvinaista ja parhaimmillaankin yksiulotteista: omistamisen tavoit-teiden nähdään liittyvän lähes yksinomaan taloudellisiin tavoitteisiin, ja tavoitteiden moninaisuus unohdetaan. Tässä tutkimuksessa tarkastellaan suomalaisten perheyrittäjien omistamisen tavoit-teellisuutta, tavoitteiden määrittelyä sekä omistajaohjauksen keinoja, lähinnä hallituksen roolia, omistukseen liittyvien ratkaisujen tekijänä. Tutkimushankkeen aineisto kerättiin EK:n ja Perheyritysten liiton jäsenyrityksistä. Aineisto kerät-tiin joulukuussa 2013 ja tammikuussa 2014 web-pohjaisella kyselyllä ja siihen vastasi määräajan kuluessa 332 vastaajaa. Vastaajista perheyrityksiä oli 241 kpl. Tarkemman analyysin kohteeksi jäi 233 perheyritystä. Tutkimuksen tulokset osoittavat, että suomalaisten yrittäjien omistajuuteen liittyvät tavoitteet ovat monipuolisempia kuin yleisesti oletetaan. Puhtaasti taloudellisiin motiiveihin perustuvan yri-tysten omistamisen ohella liiketoimintaan kohdistuva mielenkiinto ja halu toimia yrittäjänä ovat merkittäviä omistamisen vaikuttimia. Suuri joukko yritysten omistajista ei kuitenkaan tietoisesti pohdi omistamisen tavoitteita vaan omistuksen tavoitteet määrittyvät liiketoiminnan tavoitteiden tai totuttujen tapojen ja perinteiden kautta. Osalla yritysten omistajista omistus muuttuu tavoit-teellisemmaksi yrityksen kehittyessä ja omistajajoukon kasvaessa. Ensimmäisen sukupolven yrittäjät näyttävät toimivan ennen kaikkea yrittäjäideologian mukaisesti pyrkien kasvattamaan yritystä ja painottaen liiketaloudellisia arvoja päätöksenteossa. Yritystoi-minnan kehittyessä ja sukupolvien lisääntyessä yrityksen omistamiseen liittyvät tavoitteet moni-puolistuvat ja monimutkaistuvat, eivätkä enää perustu pelkästään liiketoiminnallisiin menes-tysodotuksiin. Hallitustoiminnan aktivointi aktivoi myös omistuksen tavoitteellisuuden kehittymistä. Omistus-pohjan hajaantuminen lisää tarvetta erilaisten omistajaohjauksen mekanismien hyödyntämiselle. Hallituksella näyttää olevan rooli omistusratkaisuiden arvioinnissa sekä yrityksen operatiiviseen toimintaan liittyvissä omistusratkaisuissa, mutta myös läheisemmin omistamiseen ja omistajapoh-jaan liittyvissä omistusratkaisuissa. Perheomistukseen liittyvien tavoitteiden huomioiminen on tärkeää perheyrityksen hallituksen toiminnassa myös yrityksen toiminnan vakiintuessa. Sen sijaan, että perheeseen liittyvät omista-misen tavoitteet katoaisivat yrityksestä, muuttuu niiden määrittely tietoisemmaksi ja osaksi yri-tyksen hallintoa. Määräysvallan merkitys tavoitteena pienenee, kun omistajan etäisyys operatiivi-sesta toiminnasta, tai sen johtamisesta kasvaa. Tutkimuksen tulokset kertovat omistamisen tavoitteista ja tavoitteiden määrittelystä. Selvityksen lopussa luotiin määritelmä päämäärätietoiselle omistajalle: Päämäärätietoinen omistaja on omista-ja, joka tietoisesti pohtii tavoitteita omistamiselleen sekä käyttää aktiivisesti omistajavaltaansa valitsemiensa päämäärien saavuttamiseksi.
Resumo:
The main objective of this research is to estimate and characterize heterogeneous mass transfer coefficients in bench- and pilot-scale fluidized bed processes by the means of computational fluid dynamics (CFD). A further objective is to benchmark the heterogeneous mass transfer coefficients predicted by fine-grid Eulerian CFD simulations against empirical data presented in the scientific literature. First, a fine-grid two-dimensional Eulerian CFD model with a solid and gas phase has been designed. The model is applied for transient two-dimensional simulations of char combustion in small-scale bubbling and turbulent fluidized beds. The same approach is used to simulate a novel fluidized bed energy conversion process developed for the carbon capture, chemical looping combustion operated with a gaseous fuel. In order to analyze the results of the CFD simulations, two one-dimensional fluidized bed models have been formulated. The single-phase and bubble-emulsion models were applied to derive the average gas-bed and interphase mass transfer coefficients, respectively. In the analysis, the effects of various fluidized bed operation parameters, such as fluidization, velocity, particle and bubble diameter, reactor size, and chemical kinetics, on the heterogeneous mass transfer coefficients in the lower fluidized bed are evaluated extensively. The analysis shows that the fine-grid Eulerian CFD model can predict the heterogeneous mass transfer coefficients quantitatively with acceptable accuracy. Qualitatively, the CFD-based research of fluidized bed process revealed several new scientific results, such as parametrical relationships. The huge variance of seven orders of magnitude within the bed Sherwood numbers presented in the literature could be explained by the change of controlling mechanisms in the overall heterogeneous mass transfer process with the varied process conditions. The research opens new process-specific insights into the reactive fluidized bed processes, such as a strong mass transfer control over heterogeneous reaction rate, a dominance of interphase mass transfer in the fine-particle fluidized beds and a strong chemical kinetic dependence of the average gas-bed mass transfer. The obtained mass transfer coefficients can be applied in fluidized bed models used for various engineering design, reactor scale-up and process research tasks, and they consequently provide an enhanced prediction accuracy of the performance of fluidized bed processes.
Resumo:
The mechanical and hygroscopic properties of paper and board are factors affecting the whole lifecycle of a product, including paper/board quality, production, converting, and material and energy savings. The progress of shrinkage profiles, loose edges of web, baggy web causing wrinkling and misregistration in printing are examples of factors affecting runnability and end product quality in the drying section and converting processes, where paper or board is treated as a moving web. The structural properties and internal stresses or plastic strain differences built up during production also cause the end-product defects related to distortion of the shape of the product such as sheet or box. The objective of this work was to construct a model capable of capturing the characteristic behavior of hygroscopic orthotropic material under moisture change, during different external in-plane stretch or stress conditions. Two independent experimental models were constructed: the elasto-plastic material model and the hygroexpansivity-shrinkage model. Both describe the structural properties of the sheet with a fiber orientation probability distribution, and both are functions of the dry solids content and fiber orientation anisotropy index. The anisotropy index, introduced in this work, simplifies the procedure of determining the constitutive parameters of the material model and the hygroexpansion coefficients in different in-plane directions of the orthotropic sheet. The mathematically consistent elasto-plastic material model and the dry solids content dependent hygroexpansivity have been constructed over the entire range from wet to dry. The presented elastoplastic and hygroexpansivity-shrinkage models can be used in an analytical approach to estimate the plastic strain and shrinkage in simple one-dimensional cases. For studies of the combined and more complicated effects of hygro-elasto-plastic behavior, both models were implemented in a finite element program for a numerical solution. The finite element approach also offered possibilities for studying different structural variations of orthotropic planar material, as well as local buckling behavior and internal stress situations of the sheet or web generated by local strain differences. A comparison of the simulation examples presented in this work to results published earlier confirms that the hygro-elasto-plastic model provides at least qualitatively reasonable estimates. The application potential of the hygro-elasto-plastic model is versatile, including several phenomena and defects appearing in the drying, converting and end-use conditions of the paper or board webs and products, or in other corresponding complex planar materials.
Resumo:
Invasive diseases caused by Corynebacterium diphtheriae have been described increasingly. Several reports indicate the destructive feature of endocarditis attributable to nontoxigenic strains. However, few reports have dealt with the pathogenicity of invasive strains. The present investigation demonstrates a phenotypic trait that may be used to identify potentially invasive strains. The study also draws attention to clinical and microbiological aspects observed in 5 cases of endocarditis due to C. diphtheriae that occurred outside Europe. Four cases occurred in female school-age children (7-14 years) treated at different hospitals in Rio de Janeiro, Brazil. All patients developed other complications including septicemia, renal failure and/or arthritis. Surgical treatment was performed on 2 patients for valve replacement. Lethality was observed in 40% of the cases. Microorganisms isolated from 5 blood samples and identified as C. diphtheriae subsp mitis (N = 4) and C. diphtheriae subsp gravis (N = 1) displayed an aggregative adherence pattern to HEp-2 cells and identical one-dimensional SDS-PAGE protein profiles. Aggregative-adhering invasive strains of C. diphtheriae showed 5 distinct RAPD profiles. Despite the clonal diversity, all 5 C. diphtheriae invasive isolates seemed to display special bacterial adhesive properties that may favor blood-barrier disruption and systemic dissemination of bacteria. In conclusion, blood isolates from patients with endocarditis exhibited a unique adhering pattern, suggesting a pathogenic role of aggregative-adhering C. diphtheriae of different clones in endocarditis. Accordingly, the aggregative-adherence pattern may be used as an indication of some invasive potential of C. diphtheriae strains.
Resumo:
A method for determining aflatoxins B1 (AFB1), B2 (AFB2),G1 (AFG1) andG2 (AFG2) in maize with florisil clean up was optimised aiming at one-dimensional thin layer chromatography (TLC) analysis with visual and densitometric quantification. Aflatoxins were extracted with chloroform: water (30:1, v/v), purified through florisil cartridges, separated on TLC plate, detected and quantified by visual and densitometric analysis. The in-house method performance characteristics were determined by using spiked, naturally contaminated maize samples, and certified reference material. The mean recoveries for aflatoxins were 94.2, 81.9, 93.5 and 97.3% in the range of 1.0 to 242 µg/kg for AFB1, 0.3 to 85mg/kg for AFB2, 0.6 to 148mg/kg for AFG1 and 0.6 to 140mg/kg for AFG2, respectively. The correlation values between visual and densitometric analysis for spiked samples were higher than 0.99 for AFB1, AFB2, AFG1 and 0.98 for AFG2. The mean relative standard deviations (RSD) for spiked samples were 16.2, 20.6, 12.8 and 16.9% for AFB1, AFB2, AFG1 and AFG2, respectively. The RSD of the method for naturally contaminated sample (n = 5) was 16.8% for AFB1 and 27.2% for AFB2. The limits of detection of the method (LD) were 0.2, 0.1, 0.1 and 0.1mg/kg and the limits of quantification (LQ) were 1.0, 0.3, 0.6 and 0.6mg/kg for AFB1, AFB2, AFG1 and AFG2, respectively.
Resumo:
As increasing efficiency of a wind turbine gearbox, more power can be transferred from rotor blades to generator and less power is used to cause wear and heating in the gearbox. By using a simulation model, behavior of the gearbox can be studied before creating expensive prototypes. The objective of the thesis is to model a wind turbine gearbox and its lubrication system to study power losses and heat transfer inside the gearbox and to study the simulation methods of the used software. Software used to create the simulation model is Siemens LMS Imagine.Lab AMESim, which can be used to create one-dimensional mechatronic system simulation models from different fields of engineering. When combining components from different libraries it is possible to create a simulation model, which includes mechanical, thermal and hydraulic models of the gearbox. Results for mechanical, thermal, and hydraulic simulations are presented in the thesis. Due to the large scale of the wind turbine gearbox and the amount of power transmitted, power loss calculations from AMESim software are inaccurate and power losses are modelled as constant efficiency for each gear mesh. Starting values for simulation in thermal and hydraulic simulations were chosen from test measurements and from empirical study as compact and complex design of gearbox prevents accurate test measurements. In further studies to increase the accuracy of the simulation model, components used for power loss calculations needs to be modified and values for unknown variables are needed to be solved through accurate test measurements.
Resumo:
The purpose of this master's thesis is to study customer value creation in born global companies. The main objective is to identify the types of value enabling customer value creation in born global companies, and to establish their relative importance. After an introduction to the born global academic literature and the customer value creation literature, the empirical part consists of a multiple case study, examining the state of customer value creation in the case companies, along with the subsequent analysis. The results of this research indicate that high-tech born global companies perceive customer value creation as a crucial function of their operations, but their value creation thinking is often one-dimensional. Technology based born globals often place high value on the product and the technology behind it, mainly striving to incorporate performance- and relationship value in their value offerings, but they're unable to utilize their opportunity creation to the fullest, and they lag behind their more established competitors that are able to diversify their value offerings.
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.