958 resultados para Numerical results
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
Numerical study of three-dimensional evolution of wake-type flow and vortex dislocations is performed by using a compact finite diffenence-Fourier spectral method to solve 3-D incompressible Navier-Stokes equations. A local spanwise nonuniformity in momentum defect is imposed on the incoming wake-type flow. The present numerical results have shown that the flow instability leads to three-dimensional vortex streets, whose frequency, phase as well as the strength vary with the span caused by the local nonuniformity. The vortex dislocations are generated in the nonuniform region and the large-scale chain-like vortex linkage structures in the dislocations are shown. The generation and the characteristics of the vortex dislocations are described in detail.
Resumo:
The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Based on the homotopy mapping, a globally convergent method of parameter inversion for non-equilibrium convection-dispersion equations (CDEs) is developed. Moreover, in order to further improve the computational efficiency of the algorithm, a properly smooth function, which is derived from the sigmoid function, is employed to update the homotopy parameter during iteration. Numerical results show the feature of global convergence and high performance of this method. In addition, even the measurement quantities are heavily contaminated by noises, and a good solution can be found.
Resumo:
This paper presents a method for the calculation of two-dimensional elastic fields in a solid containing any number of inhomogeneities under arbitrary far field loadings. The method called 'pseudo-dislocations method', is illustrated for the solution of interacting elliptic inhomogeneities. It reduces the interacting inhomogeneities problem to a set of linear algebraic equations. Numerical results are presented for a variety of elliptic inhomogeneity arrangements, including the special cases of elliptic holes, cracks and circular inhomogeneities. All these complicated problems can be solved with high accuracy and efficiency.
Resumo:
In the framework of the two-continuum approach, using the matched asymptotic expansion method, the equations of a laminar boundary layer in mist flows with evaporating droplets were derived and solved. The similarity criteria controlling the mist flows were determined. For the flow along a curvilinear surface, the forms of the boundary layer equations differ from the regimes of presence and absence of the droplet inertia deposition. The numerical results were presented for the vapor-droplet boundary layer in the neighborhood of a stagnation point of a hot blunt body. It is demonstrated that, due to evaporation, a droplet-free region develops near the wall inside the boundary layer. On the upper edge of this region, the droplet radius tends to zero and the droplet number density becomes much higher than that in the free stream. The combined effect of the droplet evaporation and accumulation results in a significant enhancement of the heat transfer on the surface even for small mass concentration of the droplets in the free stream. 在双连续介质理论框架下,采用匹配渐进展开方法导出并求解了具有蒸发液滴的汽雾流中层流边界层方程,给出了控制汽雾流的相似判据。对于沿曲面的流动,边界层方程的形式取决于是否存在液滴的惯性沉积。给出了热钝体验点附近蒸汽。液滴边界层的数值计算结果。它们表明:由于蒸发,在边界层内近壁处形成了一个无液滴区域;在该区上边界处,液滴半径趋于零而液滴数密度急剧增高。液滴蒸发及聚集的联合效应造成了表面热流的显著增加,甚至在自由来流中液滴质量浓度很低时此效应依然存在。
Resumo:
By making use of the evolution equation of the damage field as derived from the statistical mesoscopic damage theory, we have preliminarily examined the inhomogeneous damage field in an elastic-plastic model under constant-velocity tension. Three types of deformation and damage field evolution are presented. The influence of the plastic matrix is examined. It seems that matrix plasticity may defer the failure due to damage evolution. A criterion for damage localization is consistent with the numerical results.
Resumo:
In this study, the idealized two-dimensional detonation cells were decomposed into the primary units referred to as sub-cells. Based on the theory of oblique shock waves, an analytical formula was derived to describe the relation between the Mach number ratio through triple-shock collision and the geometric properties of the cell. By applying a modified blast wave theory, an analytical model was developed to predict the propagation of detonation waves along the cell. The calculated results show that detonation wave is, first, strengthened at the beginning of the cell after triple-shock collision, and then decays till reaching the cell end. The analytical results were compared with experimental data and previous numerical results; the agreement between them appears to be good, in general.
Resumo:
A new two-sided model rather than the one-sided model in previous works is put forward. The linear instability analysis is performed on the Marangoni-Benard convection in the two-layer system with an evaporation interface. We define a new evaporation Biot number which is different from that in the one-sided model, and obtain the curves of critical Marangoni number versus wavenumber. The influence of evaporation velocity and Biot number on the system is discussed and a new phenomenon uninterpreted before is now explained from our numerical results.
Resumo:
Hybrid finite compact (FC)-WENO schemes are proposed for shock calculations. The two sub-schemes (finite compact difference scheme and WENO scheme) are hybridized by means of the similar treatment as in ENO schemes. The hybrid schemes have the advantages of FC and WENO schemes. One is that they possess the merit of the finite compact difference scheme, which requires only bi-diagonal matrix inversion and can apply the known high-resolution flux to obtain high-performance numerical flux function; another is that they have the high-resolution property of WENO scheme for shock capturing. The numerical results show that FC-WENO schemes have better resolution properties than both FC-ENO schemes and WENO schemes. In addition, some comparisons of FC-ENO and artificial compression method (ACM) filter scheme of Yee et al. are also given.
Resumo:
The forces of random wave plus current acting on a simplified offshore platform (jacket) model have been studied numerically and experimentally. The numerical results are in good agreement with experiments. The mean force can be approximated as a function of equivalent velocity parameter and the root-mean-square force as a function of equivalent significant wave height parameter.
Resumo:
Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.
Resumo:
When the cell width of the incident detonation wave (IDW) is comparable to or larger than the Mach stem height, self-similarity will fail during IDW reflection from a wedge surface. In this paper, the detonation reflection from wedges is investigated for the wave dynamic processes occurring in the wave front, including transverse shock motion and detonation cell variations behind the Mach stem. A detailed reaction model is implemented to simulate two-dimensional cellular detonations in stoichiometric mixtures of H (2)/O (2) diluted by Argon. The numerical results show that the transverse waves, which cross the triple point trajectory of Mach reflection, travel along the Mach stem and reflect back from the wedge surface, control the size of the cells in the region swept by the Mach stem. It is the energy carried by these transverse waves that sustains the triple-wave-collision with a higher frequency within the over-driven Mach stem. In some cases, local wave dynamic processes and wave structures play a dominant role in determining the pattern of cellular record, leading to the fact that the cellular patterns after the Mach stem exhibit some peculiar modes.
Resumo:
An accurate method which directly accounts for the interactions between different microcracks is used for analyzing the elastic problem of multiple cracks solids. The effective elastic moduli for randomly oriented cracks and parallel cracks are evaluated for the representative volume element (RVE) with microcracks in infinite media. The numerical results are compared with those from various micromechanics models and experimental data. These results show that the present method is simple and provides a direct and efficient approach to dealing with elastic solids containing multiple cracks.
Resumo:
A depth-integrated two-dimensional numerical model of current, salinity and sediment transport was proposed and calibrated by the observation data in the Yangtze River Estuary. It was then applied to investigate the flow and sediment ratio of the navigati