957 resultados para Numerical method
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Os modelos de bielas e tirantes são procedimentos de análise apropriados para projetar elementos de concreto armado em casos de regiões onde há alterações geométricas ou concentrações de tensões, denominadas regiões D. Trata-se de bons modelos de representação da estrutura para avaliar melhor o seu comportamento estrutural e seu mecanismo resistente. O presente artigo aplica a técnica da otimização topológica para identificar o fluxo de tensões nas estruturas, definindo a configuração dos membros de bielas e tirantes, e quantifica seus valores para dimensionamento. Utilizam-se o método ESO, e uma variante desse, o SESO (Smoothing ESO) com o método dos elementos finitos em elasticidade plana. A filosofia do SESO baseia-se na observação de que se o elemento não for necessário à estrutura, sua contribuição de rigidez vai diminuindo progressivamente. Isto é, sua remoção é atenuada nos valores da matriz constitutiva, como se este estivesse em processo de danificação. Para validar a presente formulação, apresentam-se alguns exemplos numéricos onde se comparam suas respostas com as advindas de trabalhos científicos pioneiros sobre o assunto.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The paper presents a methodology to model three-dimensional reinforced concrete members by means of embedded discontinuity elements based on the Continuum Strong Discontinuous Approach (CSDA). Mixture theory concepts are used to model reinforced concrete as a 31) composite material constituted of concrete with long fibers (rebars) bundles oriented in different directions embedded in it. The effects of the rebars are modeled by phenomenological constitutive models devised to reproduce the axial non-linear behavior, as well as the bond-slip and dowel action. The paper presents the constitutive models assumed for the components and the compatibility conditions chosen to constitute the composite. Numerical analyses of existing experimental reinforced concrete members are presented, illustrating the applicability of the proposed methodology.
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents an interior point method for the long-term generation scheduling of large-scale hydrothermal systems. The problem is formulated as a nonlinear programming one due to the nonlinear representation of hydropower production and thermal fuel cost functions. Sparsity exploitation techniques and an heuristic procedure for computing the interior point method search directions have been developed. Numerical tests in case studies with systems of different dimensions and inflow scenarios have been carried out in order to evaluate the proposed method. Three systems were tested, with the largest being the Brazilian hydropower system with 74 hydro plants distributed in several cascades. Results show that the proposed method is an efficient and robust tool for solving the long-term generation scheduling problem.
Resumo:
The objective of this paper is the numerical study of the behavior of reinforced concrete beams and columns by non-linear numerical simulations. The numerical analysis is based on the finite element method implemented in CASTEM 2000. This program uses the constitutive elastoplastic perfect model for the steel, the Drucker-Prager model for the concrete and the Newton-Raphson for the solution of non-linear systems. This work concentrates on the determination of equilibrium curves to the beams and force-strain curves to the columns. The numeric responses are confronted with experimental results found in the literature in order to check there liability of the numerical analyses.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dispersion of pollutants in the environment is an issue of great interest as it directly affects air quality, mainly in large cities. Experimental and numerical tools have been used to predict the behavior of pollutant species dispersion in the atmosphere. A software has been developed based on the control-volume based on the finite element method in order to obtain two-dimensional simulations of Navier-Stokes equations and heat or mass transportation in regions with obstacles, varying position of the pollutant source. Numeric results of some applications were obtained and, whenever possible, compared with literature results showing satisfactory accordance. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper explores firstly the potential of a new evolutionary method - the Cross-Entropy (CE) method in solving continuous inverse electromagnetic problems. For this purpose, an adaptive updating formula for the smoothing parameter, some mutation operation, and a new termination criterion are proposed. The proposed CE based metaheuristics is applied to reduce the ripple of the magnetic levitation forces of a prototype Maglev system. The numerical results have shown that the ripple of the magnetic levitation forces of the prototype system is reduced significantly after the design optimization using the proposed algorithm.
Resumo:
We study certain stationary and time-evolution problems of trapped Bose-Einstein condensates using the numerical solution of the Gross-Pitaevskii (GP) equation with both spherical and axial symmetries. We consider time-evolution problems initiated by suddenly changing the interatomic scattering length or harmonic trapping potential in a stationary condensate. These changes introduce oscillations in the condensate which are studied in detail. We use a time iterative split-step method for the solution of the time-dependent GP equation, where all nonlinear and linear non-derivative terms are treated separately from the time propagation with the kinetic energy terms. Even for an arbitrarily strong nonlinear term this leads to extremely accurate and stable results after millions of time iterations of the original equation.