986 resultados para Nuclear Receptor


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cholecystokinin 2 (CCK-2) receptor overexpression has been demonstrated in various tumours such as medullary thyroid carcinomas and small-cell lung cancers. Due to this high expression, CCK-2 receptors might be suitable targets for radionuclide imaging and/or radionuclide therapy. Several CCK-2 receptor-binding radiopeptides have been developed and some have been tested in patients. Here we aimed to compare the in vivo tumour targeting properties of 12 (111)In-labelled 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)-conjugated gastrin/CCK2 receptor-binding peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. Moreover, it was recently reported that antagonist tracers were superior to agonist tracers for somatostatin and gastrin-releasing peptide receptor targeting of tumours. The present preclinical study determines therefore the value of an established GLP-1 receptor antagonist for the in vitro visualization of GLP-1 receptor-expressing tissues in mice and humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide receptor radionuclide therapy (PRRT) is an efficient treatment for gastroenteropancreatic neuroendocrine tumors (GEP NETs), with outstanding overall response rates and survival. However, little is known about the particular efficacy regarding bone metastasis (BM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By targeting somatostatin receptors (sst) radiopeptides have been established for both diagnosis and therapy. For physiologically normal human tissues the study provides a normative database of maximum standardized uptake value (SUV(max)) and sst mRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High levels of glucagon-like peptide-1 (GLP-1) receptor expression in human insulinomas and gastrinomas provide an attractive target for imaging, therapy, and intraoperative tumor localization, using receptor-avid radioligands. The goal of this study was to establish a tumor model for GLP-1 receptor targeting and to use a newly designed exendin-4-DTPA (DTPA is diethylenetriaminepentaacetic acid) conjugate for GLP-1 receptor targeting. METHODS: Exendin-4 was modified C-terminally with Lys(40)-NH(2), whereby the lysine side chain was conjugated with Ahx-DTPA (Ahx is aminohexanoic acid). The GLP-1 receptor affinity (50% inhibitory concentration [IC(50)] value) of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 as well as the GLP-1 receptor density in tumors and different organs of Rip1Tag2 mice were determined. Rip1Tag2 mice are transgenic mice that develop insulinomas in a well-defined multistage tumorigenesis pathway. This animal model was used for biodistribution studies, pinhole SPECT/MRI, and SPECT/CT. Peptide stability, internalization, and efflux studies were performed in cultured beta-tumor cells established from tumors of Rip1Tag2 mice. RESULTS: The GLP-1 receptor affinity of [Lys(40)(Ahx-DTPA)NH(2)]exendin-4 was found to be 2.1 +/- 1.1 nmol/L (mean +/- SEM). Because the GLP-1 receptor density in tumors of Rip1Tag2 mice was very high, a remarkably high tumor uptake of 287 +/- 62 %IA/g (% injected activity per gram tissue) was found 4 h after injection. This resulted in excellent tumor visualization by pinhole SPECT/MRI and SPECT/CT. In accordance with in vitro data, [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 uptake in Rip1Tag2 mice was also found in nonneoplastic tissues such as pancreas and lung. However, lung and pancreas uptake was distinctly lower compared with that of tumors, resulting in a tumor-to-pancreas ratio of 13.6 and in a tumor-to-lung ratio of 4.4 at 4 h after injection. Furthermore, in vitro studies in cultured beta-tumor cells demonstrated a specific internalization of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4, whereas peptide stability studies indicated a high metabolic stability of the radiopeptide in beta-tumor cells and human blood serum. CONCLUSION: The high density of GLP-1 receptors in insulinomas as well as the high specific uptake of [Lys(40)(Ahx-DTPA-(111)In)NH(2)]exendin-4 in the tumor of Rip1Tag2 mice indicate that targeting of GLP-1 receptors in insulinomas may become a useful imaging method to localize insulinomas in patients, either preoperatively or intraoperatively. In addition, Rip1Tag2 transgenic mice represent a suitable animal tumor model for GLP-1 receptor targeting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeting neuroendocrine tumors expressing somatostatin receptor subtypes (sst) with radiolabeled somatostatin agonists is an established diagnostic and therapeutic approach in oncology. While agonists readily internalize into tumor cells, permitting accumulation of radioactivity, radiolabeled antagonists do not, and they have not been considered for tumor targeting. The macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) was coupled to two potent somatostatin receptor-selective peptide antagonists [NH(2)-CO-c(DCys-Phe-Tyr-DAgl(8)(Me,2-naphthoyl)-Lys-Thr-Phe-Cys)-OH (sst(3)-ODN-8) and a sst(2)-selective antagonist (sst(2)-ANT)], for labeling with (111/nat)In. (111/nat)In-DOTA-sst(3)-ODN-8 and (111/nat)In-DOTA-[4-NO(2)-Phe-c(DCys-Tyr-DTrp-Lys-Thr-Cys)-DTyr-NH(2)] ((111/nat)In-DOTA-sst(2)-ANT) showed high sst(3)- and sst(2)-binding affinity, respectively. They did not trigger sst(3) or sst(2) internalization but prevented agonist-stimulated internalization. (111)In-DOTA-sst(3)-ODN-8 and (111)In-DOTA-sst(2)-ANT were injected intravenously into mice bearing sst(3)- and sst(2)-expressing tumors, and their biodistribution was monitored. In the sst(3)-expressing tumors, strong accumulation of (111)In-DOTA-sst(3)-ODN-8 was observed, peaking at 1 h with 60% injected radioactivity per gram of tissue and remaining at a high level for >72 h. Excess of sst(3)-ODN-8 blocked uptake. As a control, the potent agonist (111)In-DOTA-[1-Nal(3)]-octreotide, with strong sst(3)-binding and internalization properties showed a much lower and shorter-lasting uptake in sst(3)-expressing tumors. Similarly, (111)In-DOTA-sst(2)-ANT was injected into mice bearing sst(2)-expressing tumors. Tumor uptake was considerably higher than with the highly potent sst(2)-selective agonist (111)In-diethylenetriaminepentaacetic acid-[Tyr(3),Thr(8)]-octreotide ((111)In-DTPA-TATE). Scatchard plots showed that antagonists labeled many more sites than agonists. Somatostatin antagonist radiotracers therefore are preferable over agonists for the in vivo targeting of sst(3)- or sst(2)-expressing tumors. Antagonist radioligands for other peptide receptors need to be evaluated in nuclear oncology as a result of this paradigm shift.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many endocrine-disrupting chemicals act via estrogen receptor (ER) or aryl hydrocarbon receptor (AhR). To investigate the interference between ER and AhR, we studied the effects of 17beta-estradiol (E2) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of zebra fish cyp19a (zfcyp19a) and cyp19b (zfcyp19b) genes, encoding aromatase P450, an important steroidogenic enzyme. In vivo (mRNA quantification in exposed zebra fish larvae) and in vitro (activity of zfcyp19-luciferase reporter genes in cell cultures in response to chemicals and zebra fish transcription factors) assays were used. None of the treatments affected zfcyp19a, excluding the slight upregulation by E2 observed in vitro. Strong upregulation of zfcyp19b by E2 in both assays was downregulated by TCDD. This effect could be rescued by the addition of an AhR antagonist. Antiestrogenic effect of TCDD on the zfcyp19b expression in the brain was also observed on the protein level, assessed by immunohistochemistry. TCDD alone did not affect zfcyp19b expression in vivo or promoter activity in the presence of zebra fish AhR2 and AhR nuclear translocator 2b (ARNT2b) in vitro. However, in the presence of zebra fish ERalpha, AhR2, and ARNT2b, TCDD led to a slight upregulation of promoter activity, which was eliminated by either an ER or AhR antagonist. Studies with mutated reporter gene constructs indicated that both mechanisms of TCDD action in vitro were independent of dioxin-responsive elements (DREs) predicted in the promoter. This study shows the usefulness of in vivo zebra fish larvae and in vitro zfcyp19b reporter gene assays for evaluation of estrogenic chemical actions, provides data on the functionality of DREs predicted in zfcyp19 promoters and shows the effects of cross talk between ER and AhR on zfcyp19b expression. The antiestrogenic effect of TCDD demonstrated raises further concerns about the neuroendocrine effects of AhR ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peptide hormone receptors overexpressed in human tumors, such as somatostatin receptors, can be used for in vivo targeting for diagnostic and therapeutic purposes. A novel promising candidate in this field is the GLP-1 receptor, which was recently shown to be massively overexpressed in gut and lung neuroendocrine tumors--in particular, in insulinomas. Anticipating a major development of GLP-1 receptor targeting in nuclear medicine, our aim was to evaluate in vitro the GLP-1 receptor expression in a large variety of other tumors and to compare it with that in nonneoplastic tissues. METHODS: The GLP-1 receptor protein expression was qualitatively and quantitatively investigated in a broad spectrum of human tumors (n=419) and nonneoplastic human tissues (n=209) with receptor autoradiography using (125)I-GLP-1(7-36)amide. Pharmacologic competition experiments were performed to provide proof of specificity of the procedure. RESULTS: GLP-1 receptors were expressed in various endocrine tumors, with particularly high amounts in pheochromocytomas, as well as in brain tumors and embryonic tumors but not in carcinomas or lymphomas. In nonneoplastic tissues, GLP-1 receptors were present in generally low amounts in specific tissue compartments of several organs--namely, pancreas, intestine, lung, kidney, breast, and brain; no receptors were identified in lymph nodes, spleen, liver, or the adrenal gland. The rank order of potencies for receptor binding--namely, GLP-1(7-36)amide = exendin-4 >> GLP-2 = glucagon(1-29)--provided proof of specific GLP-1 receptor identification. CONCLUSION: The GLP-1 receptors may represent a novel molecular target for in vivo scintigraphy and targeted radiotherapy for a variety of GLP-1 receptor-expressing tumors. For GLP-1 receptor scintigraphy, a low-background signal can be expected, on the basis of the low receptor expression in the normal tissues surrounding tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: We aimed at designing and developing a novel bombesin analogue, DOTA-PEG(4)-BN(7-14) (DOTA-PESIN), with the goal of labelling it with (67/68)Ga and (177)Lu for diagnosis and radionuclide therapy of prostate and other human cancers overexpressing bombesin receptors. METHODS: The 8-amino acid peptide bombesin (7-14) was coupled to the macrocyclic chelator DOTA via the spacer 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG(4)). The conjugate was complexed with Ga(III) and Lu(III) salts. The GRP receptor affinity and the bombesin receptor subtype profile were determined in human tumour specimens expressing the three bombesin receptor subtypes. Internalisation and efflux studies were performed with the human GRP receptor cell line PC-3. Xenografted nude mice were used for biodistribution. RESULTS: [Ga(III)/Lu(III)]-DOTA-PESIN showed good affinity to GRP and neuromedin B receptors but no affinity to BB3. [(67)Ga/(177)Lu]-DOTA-PESIN internalised rapidly into PC-3 cells whereas the efflux from PC-3 cells was relatively slow. In vivo experiments showed a high and specific tumour uptake and good retention of [(67)Ga/(177)Lu]-DOTA-PESIN. [(67)Ga/(177)Lu]-DOTA-PESIN highly accumulated in GRP receptor-expressing mouse pancreas. The uptake specificity was demonstrated by blocking tumour uptake and pancreas uptake. Fast clearance was found from blood and all non-target organs except the kidneys. High tumour-to-normal tissue ratios were achieved, which increased with time. PET imaging with [(68)Ga]-DOTA-PESIN was successful in visualising the tumour at 1 h post injection. Planar scintigraphic imaging showed that the (177)Lu-labelled peptide remained in the tumour even 3 days post injection. CONCLUSION: The newly designed ligands have high potential with regard to PET and SPECT imaging with (68/67)Ga and targeted radionuclide therapy with (177)Lu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: Peptide receptor radionuclide therapy using the somatostatin analogue [(177)Lu-DOTA(0),Tyr(3)]octreotate is a convincing treatment modality for metastasized neuroendocrine tumors. Therapeutic doses are administered in 4 cycles with 6-10 week intervals. A high somatostatin receptor density on tumor cells is a prerequisite at every administration to enable effective therapy. In this study, the density of the somatostatin receptor subtype 2 (sst2) was investigated in the rat CA20948 pancreatic tumor model after low dose [(177)Lu-DOTA(0), Tyr(3)]octreotate administration resulting in approximately 20 Gy tumor radiation absorbed dose, whereas 60 Gy is needed to induce complete tumor regression in these and the majority of tumors. METHODS: Sixteen days after inoculation of the CA20948 tumor, male Lewis rats were injected with 185 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate to initiate a decline in tumor size. Approximately 40 days after injection, tumors re-grew progressively after initial response. Quantification of sst2 expression was performed using in vitro autoradiography on frozen sections of three groups: control (not-treated) tumors, tumors in regression and tumors in re-growth. Histology and proliferation were determined using HE- and anti-Ki-67-staining. RESULTS: The sst2 expression on CA20948 tumor cells decreased significantly after therapy to 5% of control level. However, tumors escaping from therapy showed an up-regulated sst2 level of 2-5 times higher sst2 density compared to control tumors. CONCLUSION: After a suboptimal therapeutic dose of [(177)Lu-DOTA(0),Tyr(3)]octreotate, escape of tumors is likely to occur. Since these cells show an up-regulated sst2 receptor density, a next therapeutic administration of radiolabelled sst2 analogue can be expected to be highly effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) has widespread growth effects, and in some tissues proliferation is associated with the nuclear localization of EGF and epidermal growth factor receptor (EGFR). In the thyroid, EGF promotes growth but differs from thyrotropin (TSH) in inhibiting rather than stimulating functional parameters. We have therefore studied the occurrence and cellular distribution of EGF and EGFR in normal thyroid, in Graves' disease, where growth is mediated through the thyrotropin receptor (TSHR), and in a variety of human thyroid tumors. In the normal gland the staining was variable, but largely cytoplasmic, for both EGF and EGFR. In Graves' disease there was strong cytoplasmic staining for both EGF and EGFR, with frequent positive nuclei. Nuclear positivity for EGF and particularly for EGFR was also a feature of both follicular adenomas and follicular carcinomas. Interestingly, nuclear staining was almost absent in papillary carcinomas. These findings document for the first time the presence of nuclear EGF and EGFR in thyroid. Their predominant occurrence in tissues with increased growth (Graves' disease, follicular adenoma, and carcinoma) may indicate that nuclear EGF and EGFR play a role in growth regulation in these conditions. The absence of nuclear EGF and EGFR in papillary carcinomas would suggest that the role played by EGF in growth control differs between papillary carcinoma and follicular adenomas/carcinomas of the thyroid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study the hypothesis that triiodothyronine (T3) and growth hormone (GH) may have some direct or indirect effect on the regulation of GH-receptor/GH-binding protein (GHR/GHBP) gene transcription was tested. Different concentrations of T3 (0, 0.5, 2, 10 nmol/l) and GH (0, 10, 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally-defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was quantitatively assessed by using PCR amplification. GH at a concentration of 10 ng/ml resulted in a significant increase of GHR/GHBP gene expression whereas a supraphysiological concentration of GH (150 ng/ml) caused a significant decrease of GHR/GHBP mRNA levels. The simultaneous addition of 0.5 nmol/l T3 to the variable concentrations of GH did not modify GHR/GHBP mRNA levels whereas the addition of 2 nmol/l up-regulated GHR/GHBP gene expression already after 1 h, an increase which was even more marked when 10 nmol/l of T3 was added. Interestingly, there was a positive correlation between the increase of GHR/GHBP mRNA levels and the T3 concentration used (r: 0.8). In addition, nuclear run-on experiments and GHBP determinations were performed which confirmed the changes in GHR/GHBP mRNA levels. Cycloheximide (10 microg/ml) did not alter transcription rate following GH addition but blocked GHR/GHBP gene transcription in T3 treated cells indicating that up-regulation of GHR/GHBP gene transcription caused by T3 requires new protein synthesis and is, therefore, dependent on indirect mechanisms. In conclusion, we present data showing that T3 on its own has a stimulatory effect on GHR/GHBP gene transcription which is indirect and additive to the GH-induced changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Diethylenetriamine-pentaacetic acid (DTPA)-coupled minigastrins are unsuitable for therapeutic application with the available beta-emitting radiometals due to low complex stability. Low tumour-to-kidney ratio of the known radiopharmaceuticals is further limiting their potency. We used macrocyclic chelators for coupling to increase complex stability, modified the peptide sequence to enhance radiolytic stability and studied tumour-to-kidney ratio and metabolic stability using (111)In-labelled derivatives. METHODS: Gastrin derivatives with decreasing numbers of glutamic acids were synthesised using (111)In as surrogate for therapeutic radiometals for in vitro and in vivo studies. Gastrin receptor affinities of the (nat)In-metallated compounds were determined by receptor autoradiography using (125)I-CCK as radioligand. Internalisation was evaluated in AR4-2J cells. Enzymatic stability was determined by incubating the (111)In-labelled peptides in human serum. Biodistribution was performed in AR4-2J-bearing Lewis rats. RESULTS: IC(50) values of the (nat)In-metallated gastrin derivatives vary between 1.2 and 4.8 nmol/L for all methionine-containing derivatives. Replacement of methionine by norleucine, isoleucine, methionine-sulfoxide and methionine-sulfone resulted in significant decrease of receptor affinity (IC(50) between 9.9 and 1,195 nmol/L). All cholecystokinin receptor affinities were >100 nmol/L. All (111)In-labelled radiopeptides showed receptor-specific internalisation. Serum mean-life times varied between 2.0 and 72.6 h, positively correlating with the number of Glu residues. All (111)In-labelled macrocyclic chelator conjugates showed higher tumour-to-kidney ratios after 24 h (0.37-0.99) compared to (111)In-DTPA-minigastrin 0 (0.05). Tumour wash out between 4 and 24 h was low. Imaging studies confirmed receptor-specific blocking of the tumour uptake. CONCLUSIONS: Reducing the number of glutamates increased tumour-to-kidney ratio but resulted in lower metabolic stability. The properties of the macrocyclic chelator-bearing derivatives make them potentially suitable for clinical purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two bombesin analogs, Demobesin 4 and Demobesin 1, were characterized in vitro as gastrin-releasing peptide (GRP) receptor agonist and antagonist, respectively, and were compared as (99m)Tc-labeled ligands for their in vitro and in vivo tumor-targeting properties. METHODS: N(4)-[Pro(1),Tyr(4),Nle(14)]Bombesin (Demobesin 4) and N(4)-[d-Phe(6),Leu-NHEt(13),des-Met(14)]bombesin(6-14) (Demobesin 1) were characterized in vitro for their binding properties with GRP receptor autoradiography using GRP receptor-transfected HEK293 cells, PC3 cells, and human prostate cancer specimens. Their ability to modulate calcium mobilization in PC3 and transfected HEK293 cells was analyzed as well as their ability to trigger internalization of the GRP receptor in transfected HEK293 cells, as determined qualitatively by immunofluorescence microscopy and quantitatively by enzyme-linked immunosorbent assay (ELISA). Further, their internalization properties as (99m)Tc-labeled radioligands were tested in vitro in both cell lines. Finally, their biodistribution was analyzed in PC3 tumor-bearing mice. RESULTS: A comparable binding affinity with the 50% inhibitory concentration (IC(50)) in the nanomolar range was measured for Demobesin 4 and Demobesin 1 in all tested tissues. Demobesin 4 behaved as an agonist by strongly stimulating calcium mobilization and by triggering GRP receptor internalization. Demobesin 1 was ineffective in stimulating calcium mobilization and in triggering GRP receptor internalization. However, in these assays, it behaved as a competitive antagonist as it reversed completely the agonist-induced effects in both systems. (99m)Tc-Labeled Demobesin 1 was only weakly taken up by PC3 cells or GRP receptor-transfected HEK293 cells (10% and 5%, respectively, of total added radioactivity) compared with (99m)Tc-labeled Demobesin 4 (45% of total added radioactivity in both cell lines). Remarkably, the biodistribution study revealed a much more pronounced uptake at 1, 4, and 24 h after injection of (99m)Tc-labeled Demobesin 1 in vivo into PC3 tumors than (99m)Tc-labeled Demobesin 4. In vivo competition experiments demonstrated a specific uptake in PC3 tumors and in physiologic GRP receptor-expressing tissues. The tumor-to-kidney ratios were 0.7 for Demobesin 4 and 5.2 for Demobesin 1 at 4 h. CONCLUSION: This comparative in vitro/in vivo study with Demobesin 1 and Demobesin 4 indicates that GRP receptor antagonists may be superior targeting agents to GRP receptor agonists, suggesting a change of paradigm in the field of bombesin radiopharmaceuticals.