963 resultados para Newgate Prison (East Granby, Conn.)
Resumo:
Thirty-six basalt samples from near East Pacific Rise 13N are analyzed for major and trace elements. Different types of zoned plagioclase phenocrysts in basalts are also backscatter imaged, and major element profiles scanned and analyzed for microprobe. Basalts dredged from a restricted area have evolved to different extents (MgO=9.38wt%-6.76wt%). High MgO basalts are modeled for crystallization to MgO of about 7wt%, and resulted in the Ni contents (28 ppm) that are generally lower than that in observed basalts (> 60 ppm). It suggests that low MgO basalts may have experienced more intensive magma mixing. High MgO (9.38wt%) basalt is modeled for self-"mixing-crystallization", and the high Ni contents in low MgO basalts can be generated in small scale and periodical self-mixing of new magma (high MgO). "Mixing-crystallization" processes that low MgO magmas experienced accord with recent 226Ra/230Th disequilibria studies for magma residence time, in which low MgO magmas have experienced more circles of "mixing-crystallization" in relatively longer residence time. Magma mixing is not homogeneous in magma chamber, however, low MgO magmas are closer to stable composition produced by periodical "mixing-crystallization", which is also an important reason for magma diversity in East Pacific Rise. Zoned plagioclase phenocrysts can be divided into two types: with and without high An# cores, both of which have multiple reversed An# zones, suggesting periodical mixing of their host magmas. Cores of zoned plagioclase in low MgO (7.45wt%) basalt differ significantly with their mantle in An#, but are similar in An# with microlite cores (products of equilibrium crystallization) in high MgO (9.38wt%) basalt, which further shows that plagioclase phenocryst cores in low MgO basalts may have formed in their parental magmas before entering into the magma chamber.
Resumo:
The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Volcanic rocks both from the northern East China Sea (NECS) shelf margin and the northern Okinawa Trough are subalkaline less aluminous, and lower in High Field Strength Elements (HFSE). These rocks are higher in Large Ion Lithophile Elements (LILE), thorium and uranium contents, positive lead anomalies, negative Nb-Ta anomalies, and enrichment in Light Rare Earth Elements (LREE). Basalts from the NECS shelf margin are akin to Indian Ocean Mid-Ocean Ridge Basalt (MORB), and rhyolites from the northern Okinawa Trough have the highest Pb-207/Pb-208 and Pb-208/Pb-204 ratios. The NECS shelf margin basalts have lower Sr-87/Sr-86 ratios, epsilon(Nd) and sigma O-18 than the northern Okinawa Trough silicic rocks. According to K-40-Ar-40 isotopic ages of basalts from the NECS shelf margin, rifting of the Okinawa Trough may have been active since at least 3.65-3.86 Ma. The origin of the NECS shelf margin basalt can be explained by the interaction of melt derived from Indian Ocean MORB-like mantle with enriched subcontinental lithosphere. The basalts from both sides of the Okinawa Trough may have a similar origin during the initial rifting of the Okinawa Trough, and the formation of basaltic magmas closely relates to the thinning of continental crust. The source of the formation of the northern Okinawa Trough silicic rocks was different from that of the middle Okinawa Trough, which could have been generated by the interaction of basaltic melt with an enriched crustal component. From the Ryukyu island arc to East China, the Cenozoic basalts have apparently increasing trends of MgO contents and ratios of LREE to Heavy Rare Earth Elements (HREE), suggesting that the trace element variabilities of basalts may have been influenced by the subduction of the Philippine Sea plate, and that the effects of subduction of the Philippine Sea plate on the chemical composition of basaltic melts have had a decreasing effect from the Ryukyu island arc to East China.
Resumo:
The typology and flux of settling particulate matter (SPM) were investigated based on sediment trap sampling at six typical stations in the Yellow Sea and the East China Sea. The settling particulate matter in the neritic seas was sorted into three categories, lithogenic particles, living organisms, and particle aggregates. The mass of individual organisms is an important portion of particulate matter in the neritic waters. The aggregates contain six types, mucus aggregates, fecal pellets, diatom aggregates, silicoflagellate aggregates, tintinnids, and miscellaneous aggregates, of which the silicoflagellate aggregates and tintinnids are the most abundant in the Yellow Sea and the East China Sea. High particle fluxes, such as 215 to 874 g m(-2). day(-1) SPM in the bottom layer, were found at three stations where the water was well mixed, and the maximum flux was detected in the boundary area between the Yellow Sea and the East China Sea, where a wide nepheloid layer was present. Hence, particle flux in neritic waters can be easily shifted by water turbulence. The net vertical flux (123 to 961 mg C day(-1)), the contribution of lateral advection to resuspension flux (5 to 76%), and the particulate organic carbon export ratio (18 to 60%) were estimated for the other three stations where the water was stratified. The highest values were all found in the upwelling area off the Zhejiang coast, suggesting that the area of high productivity provides a high net vertical flux of SPM. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A predominant sigmoidal clinoform deposit extends from the Yangtze River mouth southwards 800 kin along the Chinese coast. This clinoform is thickest (similar to 40m) between the 20 and 30 m isobaths and progressively thins offshore, reaching water depths of 60 and 90 m and distances up to 100 km offshore. Clay mineral, heavy metal, geochemical and grain-size analyses indicate that the Yangtze River is the primary source for this longshore-transported clinoform deposit. Pb-210 chronologies show the highest accumulation rates (> 3 cm/yr) occur immediately adjacent to the Yangtze subaqueous delta (north of 30 degrees N), decreasing southward alongshore and eastward offshore. The interaction of strong tides, waves, the China Coastal Current, winter storms, and offshore upwelling appear to have played important roles in trapping most Yangtze-derived sediment on the inner shelf and transporting it to the south. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
AMS(14)C dating and analysis of grain size, major elements and clay minerals were applied to Core MZ01 from the mud area on the inner shelf of the East China Sea. Based on the environmentally sensitive grain size, clay mineral and major element assemblages, the history of the East Asia winter monsoon since the mid-Holocene could be reconstructed. These three proxies, mean grain size (>9.71 mu m), chemical index of alteration (CIA) and ratio of smectite to kaolinite in particular, show similar fluctuation patterns. Furthermore, 10 extreme values corresponding to the contemporary cooling events could be recognized since the mid-Holocene; these extreme values are likely to have been caused by the strengthening of the East Asia winter monsoon. The cooling events correlated well with the results of the delta O-18 curves of the Dunde ice core and GISP2, which therefore revealed a regional response to global climate change. Four stages of the East Asia winter monsoon were identified, i.e. 8300-6300 a BP, strong and unstable; 6300-3800 a BP, strong but stable; 3800-1400 a BP, weak and unstable; after 1400 a BP, weak but stable.
Resumo:
128 samples from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea were analyzed for grain size, clay minerals, biogenic opal content and quartz in order to reconstruct changes in East Asian monsoon climate since 8.5 Ma. An abrupt change of terrigenous mass accumulation rate (MAR), clay mineral assemblage, median grain size and biogenic opal MAR about 5.2 Ma suggests that between 8.5-5.2 Ma the source of terrigenous sediment was mainly in the region of surface uplift and basaltic volcanism in southern Vietnam. A simple model of East Asian summer monsoon evolution was based on the clay/feldspar ratio, kaolinite/chlorite ratio and biogenic opal MAR. The summer monsoon has two periods of maximum strength at 8.5-7.6 Ma and 7.1-6.2 Ma. Subsequently, there was a relatively stable period at 6.2-3.5 Ma, continued intensification about 3.5-2.5 Ma, and gradually weakening after 2.5 Ma. Since I Ma the monsoon has intensified, with remarkable high-frequency and amplitude variability. Simultaneous increase in sedimentation rates at ODP Sites 1143, 1146 and 1148, as well as in MAR of terrigenous materials, quartz, feldspar and clay minerals at ODP Site 1143 at 3.5-2.5 Ma, may be the erosional response to both global climatic deterioration and the strengthening of the East Asian summer monsoon after about 3-4 Ma. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
AMS(14)C dating and grain-size analysis for Core PC-6, located in the middle of a mud area on the inner shelf of the East China Sea (ECS), were used to rebuild the Holocene history of the East Asian winter monsoon (EAWM). The 7.5-m core recorded the history of environmental changes during the postglacial transgression. The core's mud section (the upper 450 cm) has been formed mainly by suspended sediment delivered from the Yangtze River mouth by the ECS Winter Coastal Current (ECSWCC) since 7.6 kyr BP. Using a mathematical method called "grain size vs. standard deviatioW', we can divide the Core PC-6's grain-size distribution into two populations at about 28 mu m. The fine population (< 28 mu m) is considered to be transported by the ECSWCC as suspended loads. Content of the fine population changes little and represents a stable sedimentary environment in accord with the present situation. Thus, variation of mean grain-size from the fine population would reflect the strength of ECSWCC, which is mainly controlled by the East Asian winter monsoon. Abrupt increasing mean grain size in the mud section is inferred to be transported by sudden strengthened ECSWCC, which was caused by the strengthened EAWM. Thus, the high resolution mean grain-size variation might serve as a proxy for reconstruction of the EAWM. A good correlation between sunspot change and the mean grain-size of suspended fine population suggests that one of the primary controls on centennial- to decadal-scale changes of the EAWM in the past 8 ka is the variations of sun irradiance, i.e., the EAWM will increase in intensity when the number of sunspots decreases. Spectral analyses of the mean grain-size time series of Core PC-6 show statistically significant periodicities centering on 2463, 1368, 128, 106, 100, 88-91, 7678, and 70-72 years. The EAWM and the East Asian summer monsoon (EASM) agree with each other well on these cycles, and the East Asian Monsoon (EAM) and the Indian Monsoon also share in concurrent cycles in Holocene, which are in accord with the changes of the sun irradiance. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Mid-ocean ridge basalt (MORB) samples from the East Pacific Rise (EPR 12 degrees 50'N) were analyzed for U-series isotopes and compositions of plagioclase-hosted melt inclusions. The Ra-226 and Th-230 excesses are negatively correlated; the Ra-226 excess is positively correlated with Mg# and Sm/Nd, and is negatively correlated with La/Sm and Fe-8; the Th-230 excess is positively correlated with Fe-8 and La/Sm and is negatively correlated with Mg# and Sm/Nd. Interpretation of these correlations is critical for understanding the magmatic process. There are two models (the dynamic model and the "two-porosity" model) for interpreting these correlations, however, some crucial parameters used in these models are not ascertained. We propose instead a model to explain the U-series isotopic compositions based on the control of melt density variation. For melting either peridotite or the "marble-cake" mantle, the FeOt content, Th-230 excess and La/Sm ratio increases and Sm/Nd decreases with increasing pressure. A deep melt will evolve to a higher density and lower Mg# than a shallow melt, the former corresponds to a long residence time, which lowers the Ra-226 excess significantly. This model is supported by the existence of low Ra-226 excesses and high Th-230 excesses in MORBs having a high Fe-8 content and high density. The positive correlation of Ra-226 excess and magma liquidus temperature implies that the shallow melt is cooled less than the deep melt due to its low density and short residence time. The correlations among Fe-8, Ti-8 and Ca-8/Al-8 in plagioclase-hosted melt inclusions further prove that MORBs are formed from melts having a negative correlation in melting depths and degrees. The negative correlation of Ra-226 excess vs. chemical diversity index (standard deviation of Fe-8, Ti-8 and Ca-8/Al-8) of the melt inclusions is in accordance with the influence of a density-controlled magma residence time. We conclude that the magma density variation exerts significant control on residence time and U-series isotopic compositions. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows that three profound shifts of the East Asian winter monsoon intensity, and aridity in the Asian inland and the intensity of winter monsoon relative to summer monsoon, occurred at about 15 Ma, 8 Ma, and the younger at about 3 Ma. The phased uplift of the Himalaya-Tibetan plateau may have played a significant role in strengthening the Asian monsoon at 15 Ma, 8 Ma, and 3 Ma.
Resumo:
Global warming has become a notable trend especially since an abrupt climate change in 1976. Response of the East China Sea (ECS) to the global warming trend, however, is not well understood because of sparse long-term observation. In this paper, hydrographic observation data of 1957-1996 are collected and reviewed to study climatological variability in northern ECS. Significant warming trends are found in both summer and winter. In summer, the average SST is about 0.46A degrees C higher during the period of 1977-1996 than that of 1957-1976, and the Taiwan Warm Current Water (TWCW) was strengthened. In winter, despite of the cooling effect in the coastal areas adjacent to the Changjiang (Yangtze) River Estuary (CRE), the average SST increase was about 0.53A degrees C during the same period. The causes of this SST warming up in summer are different from in winter. The warming trend and intensification of the TWCW in summer were primarily influenced by the strengthening of the Kuroshio transport, while the warming in winter was mainly induced by the variability of the climate system.
Resumo:
We detected the responses of summertime extreme wave heights (H-top10, average of the highest 10% of significant wave heights in June, July and August) to local climate variations in the East China Sea by applying an empirical orthogonal function analysis to Htop10 derived from the WAVEWATCH- III wave model driven by 6 hourly sea surface wind fields from ERA-40 reanalysis over the period 1958-2002. Decreases in H-top10 in the northern East China Sea ( Yellow Sea) correspond to attenuation of the East Asian Summer Monsoon, while increases in the south are primarily due to enhancement of tropical cyclone activities in the western North Pacific.
Resumo:
A coupled numerical model with a 2' x 2' resolution grid has been developed and used to simulate five typical typhoon storm surges (5612, 7413, 7910, 8114, and 9711) in the East Sea of China. Three main driving forces have been considered in this coupled model: wave radiation stress, combined wave-current bottom shear stress and wave-state-dependent surface wind stress. This model has then been compared with in situ measurements of the storm set-up. The effect of different driving force components on the total storm surge has also been investigated. This study has found that the coupled model with high resolution is capable of simulating the five typical typhoons better than the uncoupled models, and that the wave-dependent surface wind stress plays an important role in typhoon storm surge-wave coupling in this area and can increase the storm set-up by 1 m. The study of the five typhoon cases has shown that the general coupling effects could increase storm set-up by 20-32%. Thus, it is suggested that to predict typhoon storm surges in the East Sea of China, a storm surge-wave coupled model be adopted. (C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea
Resumo:
A group of statistical algorithms are proposed for the inversion of the three major components of Case-H waters in the coastal area of the Huanghai Sea and the East China Sea. The algorithms are based on the in situ data collected in the spring of 2003 with strict quality assurance according to NASA ocean bio-optic protocols. These algorithms are the first ones with quantitative confidence that can be applied for the area. The average relative error of the inversed and in situ measured components' concentrations are: Chl-a about 37%, total suspended matter (TSM) about 25%, respectively. This preliminary result is quite satisfactory for Case-H waters, although some aspects in the model need further study. The sensitivity of the input error of 5% to remote sensing reflectance (Rrs) is also analyzed and it shows the algorithms are quite stable. The algorithms show a large difference with Tassan's local SeaWiFS algorithms for different waters, except for the Chl-a algorithm.