981 resultados para Neotropical tetras


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nova et Vetera, ISSN 1692 - 5866, Año 8 No. 19 (Agosto 20 - 26 de 2012)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introducción: Lucilia sericata es una especie de importancia médica y forense, utilizada en terapialarval para curar heridas crónicas y en estudios médico-legales empleada en la estimacióndel intervalo post mórtem y el traslado de cadáveres. No existen registros de las característicascitogenéticas de esta mosca en el neotrópico. El objetivo principal de este trabajo fue identificarlas características morfométricas cromosómicas y las estructuras primarias del cariotipo, a partirde especímenes de L. sericata de la cepa Bogotá, Colombia. Materiales y métodos: Se tomaronhuevos embrionados, que fueron previamente esterilizados en su superficie, se maceraron y luegofueron sembrados en el medio de cultivo L-15, suplementado con 20% de sfb, e incubados auna temperatura de 28 ºC, sin atmosfera de C02. La preparación de los cromosomas se obtuvo demonocapas celulares semiconfluentes, empleando diversas soluciones: antimitótica (Colchicina),hipotónica (KCl 0,075 M) y fijadora (Carnoy: metanol y ácido acético; 3:1). Se llevó a cabo la técnicade bandeo C para la identificación de regiones cromosómicas de heterocromatina constitutiva.Resultados: Se obtuvieron parámetros morfométricos de cada par cromosómico. El número diploidedel cariotipo obtenido de los cultivos celulares fue 2n = 12; éstos se clasificaron morfológicamente,de acuerdo con patrones previamente establecidos, así: los pares I, II, IV y V fueronmetacéntricos, y el par III fue submetacéntrico. A su vez, el par sexual fue heteromórfico, siendoel cromosoma X metacéntrico y el cromosoma Y submetacéntrico. El bandeo C fue positivo paratodos los pares cromosómicos. Conclusiones: Se establecieron las características citogenéticas deL. sericata, cepa Bogotá, Colombia, relacionadas con número, forma, tamaño, posición del centrómeroy regiones heterocromáticas de los cromosomas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Long-distance migrants wintering in tropical regions face a number of critical conservation threats throughout their lives, but seasonal estimates of key demographic parameters such as winter survival are rare. Using mist-netting-based mark-recapture data collected in coastal Costa Rica over a six-year period, we examined variation in within- and between-winter survivorship of the Prothonotary Warbler (Protonotaria citrea; 753 young and 376 adults banded), a declining neotropical habitat specialist that depends on threatened mangrove forests during the nonbreeding season. We derived parallel seasonal survivorship estimates for the Northern Waterthrush (Seiurus noveboracensis; 564 young and 93 adults banded), a cohabitant mangrove specialist that has not shown the same population decline in North America, to assess whether contrasting survivorship might contribute to the observed differences in the species’ population trajectories. Although average annual survival probability was relatively similar between the two species for both young and adult birds, monthly estimates indicated that relative to Northern Waterthrush, Prothonotary Warblers exhibited: greater interannual variation in survivorship, especially within winters; greater variation in survivorship among the three study sites; lower average between-winter survivorship, particularly among females, and; a sharp decline in between-winter survivorship from 2003 to 2009 for both age groups and both sexes. Rather than identifying one seasonal vital rate as a causal factor of Prothonotary Warbler population declines, our species comparison suggests that the combination of variable within-winter survival with decreasing between-winter survival demands a multi-seasonal approach to the conservation of this and other tropical-wintering migrants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common bird species have declined as a result of agricultural intensification and this could be mitigated by organic farming. We paired sites for habitat and geographical location on organic and nonorganic farms in Ontario, Canada to test a priori predictions of effects on birds overall, 9 guilds and 22 species in relation to candidate models for farming practices (13 variables), local habitat features (12 variables), or habitat features that influence susceptibility to predation. We found that: (1) Overall bird abundance, but not richness, was significantly (p < 0.05) higher on organic sites (mean 43.1 individuals per site) than nonorganic sites (35.8 individuals per site). Significantly more species of birds were observed for five guilds, including primary grassland birds, on organic vs. nonorganic sites. No guild had higher richness or abundance on nonorganic farms; (2) Farming practice models were the best (ΔAIC < 4) for abundance of birds overall, primary grassland bird richness, sallier aerial insectivore richness and abundance, and abundance of ground nesters; (3) Habitat models were the best for overall richness, Neotropical migrant abundance, richness and abundance of Ontario-USA-Mexico (short-distance) migrants and resident richness; (4) Predation models were the best for richness of secondary grassland birds and ground feeders; (5) A combination of variables from the model types were best for richness or abundance overall, 13 of 18 guilds (richness and abundance) and 16 of 22 species analyzed. Five of 10 farming practice variables (including herbicide use, organic farm type) and 9 of 13 habitat variables (including hedgerow length, proportion of hay) were significant in best models. Risk modeling indicated that herbicide use could decrease primary grassland birds by one species (35% decline from 3.4 to 2.3 species) per site. Organic farming could benefit species of conservation concern by 49% (an increase from 7.6 to 11.4 grassland birds). An addition of 63 m of hedgerow could increase abundance and richness of short distance migrants by 50% (3.0 to 4.8 and 1.3 to 2.0, respectively). Increasing the proportion of hay on nonorganic farms to 50% could increase abundance of primary grassland bird by 40% (6.7 to 9.4). Our results provide support for alternative farmland designs and agricultural management systems that could enhance select bird species in farmland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf-cutting ants consume up to 10% of canopy leaves in the foraging area of their colony and therefore represent a key perturbation in the nutrient cycle of tropical forests. We used a chronosequence of nest sites on Barro, Colorado Island, Panama, to assess the influence of leaf-cutting ants (Atta colombica) on nutrient availability in a neotropical rainforest. Twelve nest sites were sampled, including active nests, recently abandoned nests (<1 year) and long-abandoned nests (>1 year). Waste material discarded by the ants down-slope from the nests contained large concentrations of nitrogen and phosphorus in both total and soluble forms, but decomposed within one year after the nests were abandoned. Despite this, soil under the waste material contained high concentrations of nitrate and ammonium that persisted after the disappearance of the waste, although soluble phosphate returned to background concentrations within one year of nest abandonment. Fine roots were more abundant in soil under waste than control soils up to one year after nest abandonment, but were not significantly different for older sites. In contrast to the waste dumps, soil above the underground nest chambers consistently contained lower nutrient concentrations than control soils, although this was not statistically significant. We conclude that the 'islands of fertility' created by leaf-cutting ants provide a nutritional benefit to nearby plants for less than one year after nest abandonment in the moist tropical environment of Barro Colorado Island. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

P>1. Ants show complex interactions with plants, both facultative and mutualistic, ranging from grazers through seed predators and dispersers to herders of some herbivores and guards against others. But ants are rarely pollinators, and their visits to flowers may be detrimental to plant fitness. 2. Plants therefore have various strategies to control ant distributions, and restrict them to foliage rather than flowers. These 'filters' may involve physical barriers on or around flowers, or 'decoys and bribes' sited on the foliage (usually extrafloral nectaries - EFNs). Alternatively, volatile organic compounds (VOCs) are used as signals to control ant behaviour, attracting ants to leaves and/or deterring them from functional flowers. Some of the past evidence that flowers repel ants by VOCs has been equivocal and we describe the shortcomings of some experimental approaches, which involve behavioural tests in artificial conditions. 3. We review our previous study of myrmecophytic acacias, which used in situ experiments to show that volatiles derived from pollen can specifically and transiently deter ants during dehiscence, the effects being stronger in ant-guarded species and more effective on resident ants, both in African and Neotropical species. In these plants, repellence involves at least some volatiles that are known components of ant alarm pheromones, but are not repellent to beneficial bee visitors. 4. We also present new evidence of ant repellence by VOCs in temperate flowers, which is usually pollen-based and active on common European ants. We use these data to indicate that across a wide range of plants there is an apparent trade-off in ant-controlling filter strategies between the use of defensive floral volatiles and the alternatives of decoying EFNs or physical barriers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The importance of dispersal for the maintenance of biodiversity, while long-recognized, has remained unresolved. We used molecular markers to measure effective dispersal in a natural population of the vertebrate-dispersed Neotropical tree, Simarouba amara (Simaroubaceae) by comparing the distances between maternal parents and their offspring and comparing gene movement via seed and pollen in the 50 ha plot of the Barro Colorado Island forest, Central Panama. In all cases (parent-pair, mother-offspring, father-offspring, sib-sib) distances between related pairs were significantly greater than distances to nearest possible neighbours within each category. Long-distance seedling establishment was frequent: 74% of assigned seedlings established > 100 m from the maternal parent [mean = 392 +/- 234.6 m (SD), range = 9.3-1000.5 m] and pollen-mediated gene flow was comparable to that of seed [mean = 345.0 +/- 157.7 m (SD), range 57.6-739.7 m]. For S. amara we found approximately a 10-fold difference between distances estimated by inverse modelling and mean seedling recruitment distances (39 m vs. 392 m). Our findings have important implications for future studies in forest demography and regeneration, with most seedlings establishing at distances far exceeding those demonstrated by negative density-dependent effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature and scale of pre-Columbian land use and the consequences of the 1492 “Columbian Encounter” (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The majority of vegetation reconstructions from the Neotropics are derived from fossil pollen records extracted from lake sediments. However, the interpretation of these records is restricted by limited knowledge of the contemporary relationships between the vegetation and pollen rain of Neotropical ecosystems, especially for more open vegetation such as savannas. This research aims to improve the interpretation of these records by investigating the vegetation and modern pollen rain of different savanna ecosystems in Bolivia using vegetation inventories, artificial pollen traps and surface lake sediments. Two types of savanna were studied, upland savannas (cerrado), occurring on well drained soils, and seasonally-inundated savannas occurring on seasonally water-logged soils. Quantitative vegetation data are used to identify taxa that are floristically important in the different savanna types and to allow modern pollen/vegetation ratios to be calculated. Artificial pollen traps from the upland savanna site are dominated by Moraceae (35%), Poaceae (30%), Alchornea (6%) and Cecropia (4%). The two seasonally-inundated savanna sites are dominated by Moraceae (37%), Poaceae (20%), Alchornea (8%) and Cecropia (7%), and Moraceae (25%), Cyperaceae (22%), Poaceae (19%) and Cecropia (9%), respectively. The modern pollen rain of seasonally-inundated savannas from surface lake sediments is dominated by Cyperaceae (35%), Poaceae (33%), Moraceae (9%) and Asteraceae (5%). Upland and seasonally-flooded savannas were found to be only subtly distinct from each other palynologically. All sites have a high proportion of Moraceae pollen due to effective wind dispersal of this pollen type from areas of evergreen forest close to the study sites. Modern pollen/vegetation ratios show that many key woody plant taxa are absent/under-represented in the modern pollen rain (e.g., Caryocar and Tabebuia). The lower-than-expected percentages of Poaceae pollen, and the scarcity of savanna indicators, in the modern pollen rain of these ecosystems mean that savannas could potentially be overlooked in fossil pollen records without consideration of the full pollen spectrum available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Moraceae family is one of the most abundant and ecologically important families in Neotropical rainforests and is very well-represented in Amazonian fossil pollen records. However, difficulty in differentiating palynologically between the genera within this family, or between the Moraceae and Urticaceae families, has limited the amount of palaeoecological information that can be extracted from these records. The aim of this paper is to analyse the morphological properties of pollen from Amazonian species of Moraceae in order to determine whether the pollen taxonomy of this family can be improved. Descriptive and morphometric methods are used to identify and differentiate key pollen types of the Moraceae (mulberry) and Urticaceae (nettle) families which are represented in Amazonian rainforest communities of Noel Kempff Mercado National Park (NKMNP), Northeast Bolivia. We demonstrate that Helicostylis, Brosimum, Pseudolmedia, Sorocea and Pourouma pollen can be identified in tropical pollen assemblages and present digital images of, and a taxonomic key to, the Moraceae pollen types of NKMNP. Indicator species, Maquira coriacea (riparian evergreen forest) and Brosimum gaudichaudii (open woodland and upland savanna communities), also exhibit unique pollen morphologies. The ability to recognise these ecologically important taxa in pollen records provides the potential for much more detailed and reliable Neotropical palaeovegetation reconstructions than have hitherto been possible. In particular, this improved taxonomic resolution holds promise for resolving long-standing controversies over the interpretation of key Amazonian Quaternary pollen records.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cerrãdo savannas have the greatest fire activity of all major global land-cover types and play a significant role in the global carbon cycle. During the 21st century, temperatures are projected to increase by ∼ 3 ◦C coupled with a precipitation decrease of ∼ 20 %. Although these conditions could potentially intensify drought stress, it is unknown how that might alter vegetation composition and fire regimes. To assess how Neotropical savannas responded to past climate changes, a 14 500-year, high-resolution, sedimentary record from Huanchaca Mesetta, a palm swamp located in the cerrãdo savanna in northeastern Bolivia, was analyzed with phytoliths, stable isotopes, and charcoal. A nonanalogue, cold-adapted vegetation community dominated the Lateglacial–early Holocene period (14 500–9000 cal yr BP, which included trees and C3 Pooideae and C4 Panicoideae grasses. The Lateglacial vegetation was fire-sensitive and fire activity during this period was low, likely responding to fuel availability and limitation. Although similar vegetation characterized the early Holocene, the warming conditions associated with the onset of the Holocene led to an initial increase in fire activity. Huanchaca Mesetta became increasingly firedependent during the middle Holocene with the expansion of C4 fire-adapted grasses. However, as warm, dry conditions, characterized by increased length and severity of the dry season, continued, fuel availability decreased. The establishment of the modern palm swamp vegetation occurred at 5000 cal yr BP. Edaphic factors are the first-order control on vegetation on the rocky quartzite mesetta. Where soils are sufficiently thick, climate is the second-order control of vegetation on the mesetta. The presence of the modern palm swamp is attributed to two factors: (1) increased precipitation that increased water table levels and (2) decreased frequency and duration of surazos (cold wind incursions from Patagonia) leading to increased temperature minima. Natural (soil, climate, fire) drivers rather than anthropogenic drivers control the vegetation and fire activity at Huanchaca Mesetta. Thus the cerrãdo savanna ecosystem of the Huanchaca Plateau has exhibited ecosystem resilience to major climatic changes in both temperature and precipitation since the Lateglacial period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phylogeography of South American lineages is a topic of heated debate. Although a single process is unlikely to describe entire ecosystems, related species, which incur similar habitat limitations, can inform the history for a subsection of assemblages. We compared the phylogeographic patterns of the cytochrome oxidase I marker from Anopheles triannulatus (N = 72) and previous results for A. darlingi (N = 126) in a broad portion of their South American distributions. Both species share similar population subdivisions, with aggregations northeast of the Amazon River, in southern coastal Brazil and 2 regions in central Brazil. The average (ST) between these groups was 0.39 for A. triannulatus. Populations northeast of the Amazon and in southeastern Brazil are generally reciprocally monophyletic to the remaining groups. Based on these initial analyses, we constructed the a priori hypothesis that the Amazon and regions of high declivity pose geographic barriers to dispersal in these taxa. Mantel tests confirmed that these areas block gene flow for more than 1000 km for both species. The efficacy of these impediments was tested using landscape genetics, which could not reject our a priori hypothesis but did reject simpler scenarios. Results form summary statistics and phylogenetics suggest that both lineages originated in central Amazonia (south of the Amazon River) during the late Pleistocene (579 000 years ago) and that they followed the same paths of expansion into their contemporary distributions. These results may have implications for other species sharing similar ecological limitations but probably are not applicable as a general paradigm of Neotropical biogeography.