913 resultados para Nearest Neighbour
Resumo:
(i) The electronic and structural properties of boron doped graphene sheets, and (ii) the chemisorption processes of hydrogen adatoms on the boron doped graphene sheets have been examined by ab initio total energy calculations. In (i) we find that the structural deformations are very localized around the boron substitutional sites, and in accordance with previous studies (Endo et al 2001 J. Appl. Phys. 90 5670) there is an increase of the electronic density of states near the Fermi level. Our simulated scanning tunneling microscope (STM) images, for occupied states, indicate the formation of bright (triangular) spots lying on the substitutional boron (center) and nearest-neighbor carbon (edge) sites. Those STM images are attributed to the increase of the density of states within an energy interval of 0.5 eV below the Fermi level. For a boron concentration of similar to 2.4%, we find that two boron atoms lying on the opposite sites of the same hexagonal ring (B1-B2 configuration) represents the energetically most stable configuration, which is in contrast with previous theoretical findings. Having determined the energetically most stable configuration for substitutional boron atoms on graphene sheets, we next considered the hydrogen adsorption process as a function of the boron concentration, (ii). Our calculated binding energies indicate that the C-H bonds are strengthened near boron substitutional sites. Indeed, the binding energy of hydrogen adatoms forming a dimer-like structure on the boron doped B1-B2 graphene sheet is higher than the binding energy of an isolated H(2) molecule. Since the formation of the H dimer-like structure may represent the initial stage of the hydrogen clustering process on graphene sheets, we can infer that the formation of H clusters is quite likely not only on clean graphene sheets, which is in consonance with previous studies (Hornekaer et al 2006 Phys. Rev. Lett. 97 186102), but also on B1-B2 boron doped graphene sheets. However, for a low concentration of boron atoms, the formation of H dimer structures is not expected to occur near a single substitutional boron site. That is, the formation (or not) of H clusters on graphene sheets can be tuned by the concentration of substitutional boron atoms.
Resumo:
The growth and magnetic properties of Tin Selenide (SnSe) doped with Eu(2+) Sn(1-x)Eu(x)Se (x=2.5%) were investigated. Q-band (34 GHz) electron paramagnetic resonance measurements show that the site symmetry of Eu(2+) at 4.2 K is orthorhombic and the Lande factor was determined to be g=1.99 +/- 0.01. The exchange coupling between nearest-neighbor (NN) Eu(2+) ions was estimated from magnetization and magnetic-susceptibility measurements using a model that takes into account the magnetic contributions of single ions, pairs and triplets. The exchange interaction between Eu(2+) nearest neighbors was found to be antiferromagnetic with an estimated average value of J(p)/k(B) =-0.18 +/- 0.03 K. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Impurity-interstitial dipoles in calcium fluoride solutions with Al3+, Yb3+ and La3+ fluorides were studied using the thermally stimulated depolarization current (TSDC) technique. The dipolar complexes are formed by substitutional trivalent ions in Ca2+ sites and interstitial fluorine in nearest neighbor sites. The relaxations observed at 150 K are assigned to dipoles nnR(S)(3+)- F-i(-) (R-S = La or Yb). The purpose of this work is to study the processes of energy storage in the fluorides following X-ray and gamma irradiation. Computer modelling techniques are used to obtain the formation energy of dipole defects. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Structured meaning-signal mappings, i.e., mappings that preserve neighborhood relationships by associating similar signals with similar meanings, are advantageous in an environment where signals are corrupted by noise and sub-optimal meaning inferences are rewarded as well. The evolution of these mappings, however, cannot be explained within a traditional language evolutionary game scenario in which individuals meet randomly because the evolutionary dynamics is trapped in local maxima that do not reflect the structure of the meaning and signal spaces. Here we use a simple game theoretical model to show analytically that when individuals adopting the same communication code meet more frequently than individuals using different codes-a result of the spatial organization of the population-then advantageous linguistic innovations can spread and take over the population. In addition, we report results of simulations in which an individual can communicate only with its K nearest neighbors and show that the probability that the lineage of a mutant that uses a more efficient communication code becomes fixed decreases exponentially with increasing K. These findings support the mother tongue hypothesis that human language evolved as a communication system used among kin, especially between mothers and offspring.
Resumo:
An important feature of Axelrod`s model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction-the mass media-in the rules of Axelrod`s model: in addition to their nearest neighbors, each agent has a certain probability p to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of p is sufficient to destabilize the homogeneous regime for very large lattice sizes.
Resumo:
We consider a random walks system on Z in which each active particle performs a nearest-neighbor random walk and activates all inactive particles it encounters. The movement of an active particle stops when it reaches a certain number of jumps without activating any particle. We prove that if the process relies on efficient particles (i.e. those particles with a small probability of jumping to the left) being placed strategically on Z, then it might survive, having active particles at any time with positive probability. On the other hand, we may construct a process that dies out eventually almost surely, even if it relies on efficient particles. That is, we discuss what happens if particles are initially placed very far away from each other or if their probability of jumping to the right tends to I but not fast enough.
Resumo:
Transport coefficients have been measured as a function of the concentration of sulfur dioxide, SO(2), dissolved in 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)-imide, [BMMI][Tf(2)N], as well as in its lithium salt solution, Li[Tf(2)N]. The SO(2) reduces viscosity and density and increases conductivity and diffusion coefficients in both the neat [BMMI] [Tf(2)N] and the [BMMI][Tf(2)N]-Li[Tf(2)N] solution. The conductivity enhancement is not assigned to a simple viscosity effect; the weakening of ionic interactions upon SO(2) addition also plays a role. Microscopic details of the SO(2) effect were unraveled using Raman spectroscopy and molecular dynamics (MD) simulations. The Raman spectra suggest that the Li(+)-[Tf(2)N] interaction is barely affected by SO(2), and the SO(2)-[Tf(2)N] interaction is weaker than previously observed in an investigation of an ionic liquid containing the bromide anion. Transport coefficients calculated by MD simulations show the same trend as the experimental data with respect to SO(2) content. The MD simulations provide structural information on SO(2) molecules around [Tf(2)N], in particular the interaction of the sulfur atom of SO(2) with oxygen and fluorine atoms of the anion. The SO(2)-[BMMI] interaction is also important because the [BMMI] cations with above-average mobility have a larger number of nearest-neighbor SO(2) molecules.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
Objective: To define and evaluate a Computer-Vision (CV) method for scoring Paced Finger-Tapping (PFT) in Parkinson's disease (PD) using quantitative motion analysis of index-fingers and to compare the obtained scores to the UPDRS (Unified Parkinson's Disease Rating Scale) finger-taps (FT). Background: The naked-eye evaluation of PFT in clinical practice results in coarse resolution to determine PD status. Besides, sensor mechanisms for PFT evaluation may cause patients discomfort. In order to avoid cost and effort of applying wearable sensors, a CV system for non-invasive PFT evaluation is introduced. Methods: A database of 221 PFT videos from 6 PD patients was processed. The subjects were instructed to position their hands above their shoulders besides the face and tap the index-finger against the thumb consistently with speed. They were facing towards a pivoted camera during recording. The videos were rated by two clinicians between symptom levels 0-to-3 using UPDRS-FT. The CV method incorporates a motion analyzer and a face detector. The method detects the face of testee in each video-frame. The frame is split into two images from face-rectangle center. Two regions of interest are located in each image to detect index-finger motion of left and right hands respectively. The tracking of opening and closing phases of dominant hand index-finger produces a tapping time-series. This time-series is normalized by the face height. The normalization calibrates the amplitude in tapping signal which is affected by the varying distance between camera and subject (farther the camera, lesser the amplitude). A total of 15 features were classified using K-nearest neighbor (KNN) classifier to characterize the symptoms levels in UPDRS-FT. The target ratings provided by the raters were averaged. Results: A 10-fold cross validation in KNN classified 221 videos between 3 symptom levels with 75% accuracy. An area under the receiver operating characteristic curves of 82.6% supports feasibility of the obtained features to replicate clinical assessments. Conclusions: The system is able to track index-finger motion to estimate tapping symptoms in PD. It has certain advantages compared to other technologies (e.g. magnetic sensors, accelerometers etc.) for PFT evaluation to improve and automate the ratings
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population always travels to the nearest facility. Drezner and Drezner (2006, 2007) provide three arguments on why this assumption might be incorrect, and they introduce the extended the gravity p-median model to relax the assumption. We favour the gravity p-median model, but we note that in an applied setting, Drezner and Drezner’s arguments are incomplete. In this communication, we point at the existence of a fourth compelling argument for the gravity p-median model.
Resumo:
An administrative border might hinder the optimal allocation of a given set of resources by restricting the flow of goods, services, and people. In this paper we address the question: Do administrative borders lead to poor accessibility to public service such as hospitals? In answering the question, we have examined the case of Sweden and its regional borders. We have used detailed data on the Swedish road network, its hospitals, and its geo-coded population. We have assessed the population’s spatial accessibility to Swedish hospitals by computing the inhabitants’ distance to the nearest hospital. We have also elaborated several scenarios ranging from strongly confining regional borders to no confinements of borders and recomputed the accessibility. Our findings imply that administrative borders are only marginally worsening the accessibility.
Resumo:
A customer is presumed to gravitate to a facility by the distance to it and the attractiveness of it. However regarding the location of the facility, the presumption is that the customer opts for the shortest route to the nearest facility.This paradox was recently solved by the introduction of the gravity p-median model. The model is yet to be implemented and tested empirically. We implemented the model in an empirical problem of locating locksmiths, vehicle inspections, and retail stores ofv ehicle spare-parts, and we compared the solutions with those of the p-median model. We found the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
The p-median model is used to locate P facilities to serve a geographically distributed population. Conventionally, it is assumed that the population patronize the nearest facility and that the distance between the resident and the facility may be measured by the Euclidean distance. Carling, Han, and Håkansson (2012) compared two network distances with the Euclidean in a rural region witha sparse, heterogeneous network and a non-symmetric distribution of thepopulation. For a coarse network and P small, they found, in contrast to the literature, the Euclidean distance to be problematic. In this paper we extend their work by use of a refined network and study systematically the case when P is of varying size (2-100 facilities). We find that the network distance give as gooda solution as the travel-time network. The Euclidean distance gives solutions some 2-7 per cent worse than the network distances, and the solutions deteriorate with increasing P. Our conclusions extend to intra-urban location problems.
Resumo:
Regarding the location of a facility, the presumption in the widely used p-median model is that the customer opts for the shortest route to the nearest facility. However, this assumption is problematic on free markets since the customer is presumed to gravitate to a facility by the distance to and the attractiveness of it. The recently introduced gravity p-median model offers an extension to the p-median model that account for this. The model is therefore potentially interesting, although it has not yet been implemented and tested empirically. In this paper, we have implemented the model in an empirical problem of locating vehicle inspections, locksmiths, and retail stores of vehicle spare-parts for the purpose of investigating its superiority to the p-median model. We found, however, the gravity p-median model to be of limited use for the problem of locating facilities as it either gives solutions similar to the p-median model, or it gives unstable solutions due to a non-concave objective function.
Resumo:
Over the last decade, we have seen a massive increase in the construction of wind farms in northern Fennoscandia. Wind farms comprising hundreds of wind turbines are being built, with little knowledge of the possible cumulative adverse effects on the habitat use and migration of semi-domesticated free-ranging reindeer. We assessed how reindeer responded to wind farm construction in an already fragmented landscape, with specific reference to the effects on use of movement corridors and reindeer habitat selection. We used GPS-data from reindeer during calving and post-calving in the MalAyen reindeer herding community in Sweden. We analysed data from the pre-development years compared to the construction years of two relatively small wind farms. During construction of the wind farms, use of original migration routes and movement corridors within 2 km of development declined by 76 %. This decline in use corresponded to an increase in activity of the reindeer measured by increased step lengths within 0-5 km. The step length was highest nearest the development and declining with distance, as animals moved towards migration corridors and turned around or were observed in holding patterns while not crossing. During construction, reindeer avoided the wind farms at both regional and landscape scale of selection. The combined construction activities associated with even a few wind turbines combined with power lines and roads in or close to central movement corridors caused a reduction in the use of such corridors and grazing habitat and increased the fragmentation of the reindeer calving ranges.