979 resultados para NONLOCAL CHARGE
Resumo:
Electrically active defects in the phosphor-doped single-crystal silicon, induced by helium-ion irradiation under thermal annealing, have been investigated. Isothermal charge-sensitive deep-level transient spectroscopy was employed to study the activation energy and capture cross-section of helium-induced defects in silicon samples. It was shown that the activation energy levels produced by helium-ion irradiation first increased with increasing annealing temperature, with the maximum value of the activation energy occurring at 873K, and reduced with further increase of the annealing temperature. The energy levels of defects in the samples annealed at 873 and 1073K are found to be located near the mid-forbidden energy gap level so that they can act as thermally stable carrier recombination centres.
Resumo:
L-shell X-ray spectra of Mo surface induced by Xe25+ and Xe29+ were measured. The X-ray intensity was obtained in the kinetic energy range of the incident ions from 350 to 600 keV. The relationship of X-ray intensity with kinetic energy of the projectile and its charge state were studied, and the simple explanation was given.
Resumo:
The charge stripping injection method has been adopted for the accumulation of light heavy ions in HIRFL-CSR. This method has some special requirements for the accelerating particles, and at the same time the structure of the injection orbit has to be changed. In this paper, the design of the orbit has been presented, as well as the calculation of the beam line matching. According to the result of commissioning, stripping injection can accumulate the beam to a higher current.
Resumo:
Charge state distribution of 0.8MeV/u uranium ions after transmission through a thin carbon foil has been studied. It is observed that the charge state distribution is equilibrated after the uranium ions have passed through a 15 mu g/cm(2) carbon foil. The equilibrated average charge state is 33.72 and the charge equilibration time of uranium ions in carbon foil is less than 5.4fs.
Resumo:
Charge transfer due to collisions of ground state O3+ (2s(2)2p P-2) ions with molecular hydrogen is investigated using the quantum-mechanical molecular-orbital close-coupling (MOCC) method, and electronic and vibrational state-selective cross sections along with the corresponding differential cross sections are calculated for projectile energies of 100, 500, 1000 and 5000 eV/u at the orientation angles of 25 degrees,45 degrees and 89 degrees. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations were obtained with the spin-coupled valence-bond approach. The infinite order sudden approximation (IOSA) and the vibrational sudden approximation (VSA) are utilized to deal with the rotation of H-2 and the coupling between the electron and the vibration of H-2. It is found that the distribution of vibrationally resolved cross sections with the vibrational quantum number upsilon' of H-2(+) (upsilon') varies with the increment of the projectile energy; and the electronic and vibrational stateselective differential cross sections show similar behaviors: there is a highest platform within a very small scattering angle, beyond which the differential cross sections decrease as the scattering angle increases and lots of oscillating structures appear, where the scattering angle of the first structure decreases as E-P(-1/2) with the increment of the projectile energy E-P; and the structure and amplitude of the differential cross sections are sensitive to the orientation of molecule H-2, which provides a possibility to identify the orientations of molecule H-2 by the vibrational state-selective differential scattering processes.