1000 resultados para NI
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
The electrochemical behavior of a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu or Zn), was investigated systematically and comparably in aqueous solutions by electrochemical and in situ UV-visible-near-IR spectroelectrochemical methods. These compounds exhibit not only successive reduction processes of the addenda atoms (W) in a negative potential range, but some of them also involve redox reactions originating from the substituted transition metals (M) such as the reduction of Fe-III and Cu-II at less negative potentials and the oxidation of Mn-II at a more positive potential. Some interesting results and phenomena, especially of the transition metals, were found for the first time. Moreover, possible reaction mechanisms are proposed based on the experimental results.
Resumo:
A novel mixed-valence molybdenum(IV, VI) arsenate(III), Ni(H2NCH2CH2NH2)(3)[((MoO6)-O-IV)(Mo6O18)-O-VI((As3O3)-O-III)(2)]H2O, hydrothermally synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. The polyanion cage derives from the Anderson structure, in which the central octahedron was filled up by molybdenum(IV) and it was capped on both sides by a novel As3O63- cyclo-triarsenate(III). The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Two new metal-ore supported transition metal complexes, E{M(phen)(2)}(2)(Mo8O26) (M = Ni or CO; phen = 1,10-phenanthroline) are synthesized by a hydrothermal method and characterized by X-ray crystallography, showing that the octamolybdate possesses a novel unprecedented structure and that [M(phen)(2)](2+) units are covalently bonded to the [Mo8O26](4-) cluster.
Resumo:
The catalytic partial oxidation of methane to syngas over Ni/Al2O3, Pt/Al2O3 and a series of Pt - Ni/Al2O3 catalysts was investigated. It was found that Pt - Ni/Al2O3 catalysts exhibit higher activity and stability than Ni/Al2O3 and Pt/Al2O3. TPR and TPD methods were used to characterize Pt - Ni bimetallic interactions in the catalysts. A series of Pt - Ni/Al2O3 catalysts and unsupported Pt - Ni samples were studied by XRD and XPS. It was found the formation of Pt - Ni alloy in the Pt - Ni/Al2O3 catalysts and the enrichment of platinum on the surface of the catalysts. It is concluded that the higher activity and stability of Pt - Ni/Al2O3 catalysts were caused by Pt - Ni bimetallic interactions.
Resumo:
The crystal structure of the title compound, bis[tris(2,2'-bipyridyl-N,N')nickel(II)] cyclo-tetravanadate undecahydrate, contains a centrosymmetric [V4O12](4-) anion, which has an eight-membered ring structure formed by four VO4 tetrahedra sharing vertices, and two complex cations containing octahedrally-coordinated Ni-II ions. The anion and coordinated Ni-II ions are isolated and make up anion and cation layers, respectively. The Ni-N distances range from 2.077(3) to 2.112(2)Angstrom and the V-O distances range from 1.621(2) to 1.803(2)Angstrom.
Partial oxidation of methane to synthesize gas over Ni/alpha-Al2O3 catalyst promoted by noble metals
Resumo:
The production of synthesis gas by partial oxidation bf methane in oxygen has been examined over Ni/alpha-Al2O3 catalyst promoted by noble metals(Rh, Ru, Pt and Pd), especially with Pt. The reactivity is considered in conjunction with the result of H-2-TPR, CO-TPD, SEM and XRD. It is found that small amount of Pt results in a great improvement of activity for the Ni/alpha-Al2O3 catalyst. The activity order is : Rh-Ni>Pt-Ni approximate to Ru-Ni>Pd-Ni, meantime the Pt improves the stability of Ni/alpha-Al2O3 catalyst except for Pd which is easy to he deactivated by carbon deposition. The results of TPD, SEM and XRD indicate that there is an interaction between Ni and Pt metals in the catalyst. The interaction increases the dispersions of Pt and Nit the presence of Pt suppresses the growth and the migration of Ni grains over the surface of the catalyst.
Resumo:
合成了具有钙钛石ABO3结构的LaNiO3和La0.1Sr0.9NiO3及具有类钙钛石A2BO4结构的La2NiO4和LaSrNiO4等四个Ni系复合氧化物催化剂.研究了该系列复合氧化物的晶体结构,缺陷结构,B位Ni离子的价态,氧化还原性能及对NO分子的吸附性能等固态物化性质.考察了它们对NO+CO反应的催化性能,并与NO直接分解进行了对比研究.探讨了结构因素对Ni系复合氧化物催化剂的固态物化性质及催化性能的影响.提出了NO+CO反应的反应机理
Resumo:
甲烷部分氧化制合成气因其高空速、高转化率、低H2/CO比而引起人们的重视[1~5].本文研究了在Ni/α-Al2O3催化剂中添加的Rh、Ru、Pt和Pd等贵金属在甲烷部分氧化制合成气反应中的催化作用,重点研究了添加Pt对Ni/α-Al2O3催化剂反应…
Resumo:
研究了Ni/Al_2O_3,Pt/Al_2O_3和一系列Pt-Ni/Al_2O_3催化剂对甲烷部分氧化制合成气的催化作用,发现Pt-Ni/Al_2O_3催化剂显示了比Ni/Al_2O_3和Pt/Al_2O_3更高的活性和稳定性.H_2-TPR,CO-TPD,CO_2-TPD,SEM,XPS和XRD等结果证明:Pt和Ni之间存在较强的相互作用,Pt和部分Ni形成固溶体合金并且Pt在催化剂表面富集.Pt和Ni之间的相互作用提高了催化剂的活性和稳定性,甲烷在Pt-Ni/Al_2O_3上的催化部分氧化具有不同于在Pt/Al_2O_3和Ni/Al_2O_3上的反应性能.
Resumo:
应用介电描述的复杂晶体化学键理论,给出计算Ni2+和Er3+在固体中的电子云扩大效应的新方法.
Resumo:
采用XRD、UV-DRS、XPS、TPR、H2-O2滴定和吡啶吸附-红外光谱等技术,研究了负载于具有不同酸碱性的γ-Al2O3、SiO2、MgO载体上的镍催化剂表面物理化学性质,及其对甲烷与二氧化碳重整制取合成气反应催化活性的影响.结果表明,在上述负载型镍催化剂上,影响重整反应活性和积炭量的主要原因不是催化剂表面酸碱性,而是金属镍在催化剂表面的分散度.金属与载体之间的相互作用强弱,影响金属的分散度和在反应过程中的抗烧结能力.即相互作用越强,催化剂越难还原,还原后金属在表面的分散度越大,而且在反应过程中的抗烧结能力越强,从而有利于提高催化剂在甲烷与二氧化碳重整反应中的活性和稳定性
Resumo:
采用XRD、UV-DRS、H2-O2滴定、TPR、吡啶吸附红外光谱等技术,研究了La2O3助剂对La2O3-Ni/SrAl12O19催化剂的还原性、表面酸性、金属镍的分散度和抗烧结能力,以及对催化甲烷与二氧化碳重整制取合成气反应性能的影响.结果表明,在负载型的镍催化剂中,添加La2O3助剂,能够削弱金属组分与载体之间的相互作用,降低催化剂的还原性,提高金属镍在催化剂表面的分散度和在反应过程中的抗烧结能力,降低催化剂表面酸性.关联甲烷与二氧化碳重整反应活性的结果,发现影响负载型镍催化剂的反应活性、稳定性和积炭性质的主要因素是金属镍的分散状态,而不是催化剂表面酸性.La2O3主要是通过改变镍的分散度来影响催化甲烷与二氧化碳重整反应活性的.
Resumo:
研究了Ni/Al2O3催化剂对甲烷部分氧化制合成气的反应性能.结果表明,催化剂在其活性组份Ni为10%时反应性能最好.条件实验表明,在600~900℃范围内,甲烷转化率和CO、H2的选择性随温度升高而增加;转化率和选择性在甲烷空速≤1.5×105h-1时基本不变,空速>1.5×105h-1时,转化率和选择性有所下降.随着压力的增加(0.05~0.40MPa),转化率和选择性下降.SEM和化学分析结果证明在反应过程中,Ni组份存在烧结和流失现象.
Resumo:
研究了稀土金属氧化物(La2O3,CeO2,Pr6O11和Nd2O3)对Ni/α-Al2O3催化剂上甲烷部分氧化制合成气反应的影响.X光粉末衍射和活性考察结果表明,稀土氧化物使Ni/α-Al2O3催化剂的稳定性有显著提高.稀土氧化物与活性组份Ni之间的相互作用抑制了催化剂表面Ni晶粒的生长和迁移,由于这种作用也抑制了催化剂表面积炭的生成.在实验中还发现CeO2容易进行Ce3+Ce4+氧化还原反应而对反应具有催化活性.