995 resultados para NATURAL HEAD
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Radiant frost is a significant production constraint to wheat (Triticum aestivum) and barley (Hordeum vulgare), particularly in regions where spring-habit cereals are grown through winter, maturing in spring. However, damage to winter-habit cereals in reproductive stages is also reported. Crops are particularly susceptible to frost once awns or spikes emerge from the protection of the flag leaf sheath. Post-head-emergence frost (PHEF) is a problem distinct from other cold-mediated production constraints. To date, useful increased PHEF resistance in cereals has not been identified. Given the renewed interest in reproductive frost damage in cereals, it is timely to review the problem. Here we update the extent and impacts of PHEF and document current management options to combat this challenge. We clarify terminology useful for discussing PHEF in relation to chilling and other freezing stresses. We discuss problems characterizing radiant frost, the environmental conditions leading to PHEF damage, and the effects of frost at different growth stages. PHEF resistant cultivars would be highly desirable, to both reduce the incidence of direct frost damage and to allow the timing of crop maturity to be managed to maximize yield potential. A framework of potential adaptation mechanisms is outlined. Clarification of these critical issues will sharpen research focus, improving opportunities to identify genetic sources for improved PHEF resistance.
Resumo:
Diseases caused by Tobacco streak virus (TSV) have resulted in significant crop losses in sunflower and mung bean crops in Australia. Two genetically distinct strains from central Queensland, TSV-parthenium and TSV-crownbeard, have been previously described. They share only 81% total-genome nucleotide sequence identity and have distinct major alternative hosts, Parthenium hysterophorus (parthenium) and Verbesina encelioides (crownbeard). We developed and used strain-specific multiplex Polymerase chain reactions (PCRs) for the three RNA segments of TSV-parthenium and TSV-crownbeard to accurately characterise the strains naturally infecting 41 hosts species. Hosts included species from 11 plant families, including 12 species endemic to Australia. Results from field surveys and inoculation tests indicate that parthenium is a poor host of TSV-crownbeard. By contrast, crownbeard was both a natural host of, and experimentally infected by TSV-parthenium but this infection combination resulted in non-viable seed. These differences appear to be an effective biological barrier that largely restricts these two TSV strains to their respective major alternative hosts. TSV-crownbeard was seed transmitted from naturally infected crownbeard at a rate of between 5% and 50% and was closely associated with the geographical distribution of crownbeard in central Queensland. TSV-parthenium and TSV-crownbeard were also seed transmitted in experimentally infected ageratum (Ageratum houstonianum) at rates of up to 40% and 27%, respectively. The related subgroup 1 ilarvirus, Ageratum latent virus, was also seed transmitted at a rate of 18% in ageratum which is its major alternative host. Thrips species Frankliniella schultzei and Microcephalothrips abdominalis were commonly found in flowers of TSV-affected crops and nearby weed hosts. Both species readily transmitted TSV-parthenium and TSV-crownbeard. The results are discussed in terms of how two genetically and biologically distinct TSV strains have similar life cycle strategies in the same environment.
Resumo:
The rapid uptake of transcriptomic approaches in freshwater ecology has seen a wealth of data produced concerning the ways in which organisms interact with their environment on a molecular level. Typically, such studies focus either at the community level and so don’t require species identifications, or on laboratory strains of known species identity or natural populations of large, easily identifiable taxa. For chironomids, impediments still exist for applying these technologies to natural populations because they are small-bodied and often require time-consuming secondary sorting of stream material and morphological voucher preparation to confirm species diagnosis. These procedures limit the ability to maintain RNA quantity and quality in such organisms because RNA degrades rapidly and gene expression can be altered rapidly in organisms; thereby limiting the inclusion of such taxa in transcriptomic studies. Here, we demonstrate that these limitations can be overcome and outline an optimised protocol for collecting, sorting and preserving chironomid larvae that enables retention of both morphological vouchers and RNA for subsequent transcriptomics purposes. By ensuring that sorting and voucher preparation are completed within <4 hours after collection and that samples are kept cold at all times, we successfully retained both RNA and morphological vouchers from all specimens. Although not prescriptive in specific methodology, we anticipate that this paper will assist in promoting transcriptomic investigations of the sublethal impact on chironomid gene expression of changes to aquatic environments.
Resumo:
The paradigm of computational vision hypothesizes that any visual function -- such as the recognition of your grandparent -- can be replicated by computational processing of the visual input. What are these computations that the brain performs? What should or could they be? Working on the latter question, this dissertation takes the statistical approach, where the suitable computations are attempted to be learned from the natural visual data itself. In particular, we empirically study the computational processing that emerges from the statistical properties of the visual world and the constraints and objectives specified for the learning process. This thesis consists of an introduction and 7 peer-reviewed publications, where the purpose of the introduction is to illustrate the area of study to a reader who is not familiar with computational vision research. In the scope of the introduction, we will briefly overview the primary challenges to visual processing, as well as recall some of the current opinions on visual processing in the early visual systems of animals. Next, we describe the methodology we have used in our research, and discuss the presented results. We have included some additional remarks, speculations and conclusions to this discussion that were not featured in the original publications. We present the following results in the publications of this thesis. First, we empirically demonstrate that luminance and contrast are strongly dependent in natural images, contradicting previous theories suggesting that luminance and contrast were processed separately in natural systems due to their independence in the visual data. Second, we show that simple cell -like receptive fields of the primary visual cortex can be learned in the nonlinear contrast domain by maximization of independence. Further, we provide first-time reports of the emergence of conjunctive (corner-detecting) and subtractive (opponent orientation) processing due to nonlinear projection pursuit with simple objective functions related to sparseness and response energy optimization. Then, we show that attempting to extract independent components of nonlinear histogram statistics of a biologically plausible representation leads to projection directions that appear to differentiate between visual contexts. Such processing might be applicable for priming, \ie the selection and tuning of later visual processing. We continue by showing that a different kind of thresholded low-frequency priming can be learned and used to make object detection faster with little loss in accuracy. Finally, we show that in a computational object detection setting, nonlinearly gain-controlled visual features of medium complexity can be acquired sequentially as images are encountered and discarded. We present two online algorithms to perform this feature selection, and propose the idea that for artificial systems, some processing mechanisms could be selectable from the environment without optimizing the mechanisms themselves. In summary, this thesis explores learning visual processing on several levels. The learning can be understood as interplay of input data, model structures, learning objectives, and estimation algorithms. The presented work adds to the growing body of evidence showing that statistical methods can be used to acquire intuitively meaningful visual processing mechanisms. The work also presents some predictions and ideas regarding biological visual processing.
Resumo:
The invasive rust Puccinia psidii (myrtle rust) was detected in Australia in 2010 and is now established along the east coast from southern New South Wales to far north Queensland. Prior to reaching Australia, severe damage from P. psidii was mainly restricted to exotic eucalypt plantations in South America, guava plantations in Brazil, allspice plantations in Jamaica, and exotic Myrtaceous tree species in the USA; the only previous record of widespread damage in native environments is of endangered Eugenia koolauensis in Hawai’i. Using two rainforest tree species as indicators of the impact of P. psidii, we report for the first time severe damage to endemic Myrtaceae in native forests in Australia, after only 4 years’ exposure to P. psidii. A 3-year disease exclusion trial in a natural stand of Rhodamnia rubescens unequivocally showed that repeated, severe infection leads to gradual crown loss and ultimately tree mortality; trees were killed in less than 4 years. Significant (p < 0.001) correlations were found between both incidence (r = 0.36) and severity (r = 0.38) of P. psidii and subsequent crown loss (crown transparency). This provided supporting evidence to conclude a causal association between P. psidii and crown loss and tree mortality in our field assessments of R. rubescens and Rhodomyrtus psidioides across their native range. Assessments revealed high levels of damage by P. psidii to immature leaves, shoots and tree crowns—averaging 76 % (R. rubescens) and 95 % (R. psidioides) crown transparency—as well as tree mortality. For R. psidioides, we saw exceptionally high levels of tree mortality, with over half the trees surveyed dead and 40 % of stands with greater than 50 % tree mortality, including two stands where all trees were dead. Tree mortality was less prevalent for R. rubescens, with only 12 % of trees surveyed dead and two sites with greater than 50 % mortality. Any alternative causal agents for this tree mortality have been discounted. The ecological implications of this are unclear, but our work clearly illustrates the potential for P. psidii to negatively affect Australia’s biodiversity.
Resumo:
Tripogon loliiformis is a desiccation-tolerant grass that occurs throughout mainland Australia. There has been recent interest in this species as a model system for understanding desiccation tolerance in a native grass at the structural, molecular and physiological levels. However, not much is known about the biology and natural history of this species, despite its widespread geographic distribution and remarkable capability of withstanding prolonged drying. We provide an overview of the genus by consolidating information from a wide variety of sources. We report a variety of new and interesting observations on the general biology, ecology and desiccation response of T. loliiformis and conclude by highlighting areas for future research.
Resumo:
Lamb suckling has been suggested to be an important way of infecting a ewe's udder with different bacteria, including Mannheimia haemolytica. To test the potential role of lambs in transferring Mannheimia species to the ewe’s udder, the restriction endonuclease cleavage patterns of isolates obtained from nasopharyngeal swabs were compared with those obtained from cases of mastitis. Sterile cotton swabs were used to collect nasopharyngeal samples from 50 ewes and 36 lambs from three flocks. M. haemolytica and Mannheimia glucosida as well as haemolytic Mannheimia ruminalis-like organisms were detected in the upper respiratory tract of lambs and ewes. Comparison of the restriction endonuclease cleavage patterns of the isolates suggested that the M. haemolytica isolates obtained from different milk samples from ewes with mastitis were more clonal than those obtained from the nasal swabs. However, some nasal isolates within both Mannheimia species had restriction endonuclease cleavage patterns identical to those obtained from milk samples from ewes with mastitis, indicating that lambs may have a role in transferring these organisms to the udder. More clonality was observed between the M. glucosida isolates than between M. haemolytica isolates.
Resumo:
Hendra virus (HeV) is a lethal zoonotic agent that emerged in 1994 in Australia. Pteropid bats (flying-foxes) are the natural reservoir. To date, HeV has spilled over from flying-foxes to horses on 51 known occasions, and from infected horses to close-contact humans on seven occasions. We undertook screening of archived bat tissues for HeV by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Tissues were tested from 310 bats including 295 Pteropodiformes and 15 Vespertilioniformes. HeV was detected in 20 individual flying-foxes (6.4%) from various tissues including spleen, kidney, liver, lung, placenta and blood components. Detection was significantly higher in Pteropus Alecto and Pconspicillatus, identifying species as a risk factor for infection. Further, our findings indicate that HeV has a predilection for the spleen, suggesting this organ plays an important role in HeV infection. The lack of detections in the foetal tissues of HeV-positive females suggests that vertical transmission is not a regular mode of transmission in naturally infected flying-foxes, and that placental and foetal tissues are not a major source of infection for horses. A better understanding of HeV tissue tropism will strengthen management of the risk of spillover from flying-foxes to horses and ultimately humans.
Resumo:
ABSTRACT: In 2012, giant tiger shrimp Penaeus monodon originally sourced from Joseph Bonaparte Gulf in northern Australia were examined in an attempt to identify the cause of elevated mortalities among broodstock at a Queensland hatchery. Nucleic acid extracted from ethanol-fixed gills of 3 individual shrimp tested positive using the OIE YHV Protocol 2 RT-PCR designed to differentiate yellow head virus (YHV1) from gill-associated virus (GAV, synonymous with YHV2) and the OIE YHV Protocol 3 RT-nested PCR designed for consensus detection of YHV genotypes. Sequence analysis of the 794 bp (Protocol 2) and 359 bp (Protocol 3) amplicons from 2 distinct regions of ORF1b showed that the yellow-head-complex virus detected was novel when compared with Genotypes 1 to 6. Nucleotide identity on the Protocol 2 and Protocol 3 ORF1b sequences was highest with the highly pathogenic YHV1 genotype (81 and 87%, respectively) that emerged in P. monodon in Thailand and lower with GAV (78 and 82%, respectively) that is enzootic to P. monodon inhabiting eastern Australia. Comparison of a longer (725 bp) ORF1b sequence, spanning the Protocol 3 region and amplified using a modified YH30/31 RT-nPCR, provided further phylogenetic evidence for the virus being distinct from the 6 described YHV genotypes. The virus represents a unique seventh YHV genotype (YHV7). Despite the mortalities observed, the role of YHV7 remains unknown.
Resumo:
It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).
Resumo:
A method based on an assumption that the radial bending moment is zero at a nodal circle is shown to yield accurate estimates of natural frequencies corresponding to higher modes of transversely vibrating polar orthotropic annular plates for various combinations of clamped, simply supported and free edge conditions. This method is found to be convenient for the determination of locations of nodal circles as well. Numerical investigations revealed that for small holes, nodal circles tend to move towards the outer edge with increasing number of nodal diameters. For large holes, it has been shown that the plate behaves like a long rectangular strip.
Resumo:
Radical circumstances (bushfires and natural disasters) flush out the mental illness in society. Whenever there’s a disaster, there’s a rush on hospital admissions for psychiatric problems. But on the whole, the illness is already there. Emergencies naturally make fodder for delusions and the emergency efforts, for mania. Obviously, there are direct mental health consequences – a small rise in post-traumatic stress disorder inevitably follows disaster. This correlates with the severity of the consequences of the disaster (loss of family, friends, animals and property). And there’s usually a big rethink, with about a third of those affected leaving the area permanently. But, for the most part, this isn’t driven by mental health issues, it results from the very real fears about whether living in a fire (or other disaster) zone is worth it.
Resumo:
Head motion (HM) is a well known confound in analyses of functional MRI (fMRI) data. Neuroimaging researchers therefore typically treat HM as a nuisance covariate in their analyses. Even so, it is possible that HM shares a common genetic influence with the trait of interest. Here we investigate the extent to which this relationship is due to shared genetic factors, using HM extracted from resting-state fMRI and maternal and self report measures of Inattention and Hyperactivity-Impulsivity from the Strengths and Weaknesses of ADHD Symptoms and Normal Behaviour (SWAN) scales. Our sample consisted of healthy young adult twins (N = 627 (63% females) including 95 MZ and 144 DZ twin pairs, mean age 22, who had mother-reported SWAN; N = 725 (58% females) including 101 MZ and 156 DZ pairs, mean age 25, with self reported SWAN). This design enabled us to distinguish genetic from environmental factors in the association between head movement and ADHD scales. HM was moderately correlated with maternal reports of Inattention (r = 0.17, p-value = 7.4E-5) and Hyperactivity-Impulsivity (r = 0.16, p-value = 2.9E-4), and these associations were mainly due to pleiotropic genetic factors with genetic correlations [95% CIs] of rg = 0.24 [0.02, 0.43] and rg = 0.23 [0.07, 0.39]. Correlations between self-reports and HM were not significant, due largely to increased measurement error. These results indicate that treating HM as a nuisance covariate in neuroimaging studies of ADHD will likely reduce power to detect between-group effects, as the implicit assumption of independence between HM and Inattention or Hyperactivity-Impulsivity is not warranted. The implications of this finding are problematic for fMRI studies of ADHD, as failing to apply HM correction is known to increase the likelihood of false positives. We discuss two ways to circumvent this problem: censoring the motion contaminated frames of the RS-fMRI scan or explicitly modeling the relationship between HM and Inattention or Hyperactivity-Impulsivity
Resumo:
Natural convection in rectangular two-dimensional cavities with differentially heated side walls is a standard problem in numerical heat transfer. Most of the existing studies has considered the low Ra laminar regime. The general thrust of the present research is to investigate higher Ra flows extending into the unsteady and turbulent regimes where the physics is not fully understood and appropriate models for turbulence are not yet established. In the present study the Boussinesq approximation is being used, but the theoretical background and some preliminary results have been obtained[1] for flows with variable properties.