941 resultados para Multiprocessor scheduling with resource sharing
Resumo:
Performance studies of actual parallel systems usually tend to concéntrate on the effectiveness of a given implementation. This is often done in the absolute, without quantitave reference to the potential parallelism contained in the programs from the point of view of the execution paradigm. We feel that studying the parallelism inherent to the programs is interesting, as it gives information about the best possible behavior of any implementation and thus allows contrasting the results obtained. We propose a method for obtaining ideal speedups for programs through a combination of sequential or parallel execution and simulation, and the algorithms that allow implementing the method. Our approach is novel and, we argüe, more accurate than previously proposed methods, in that a crucial part of the data - the execution times of tasks - is obtained from actual executions, while speedup is computed by simulation. This allows obtaining speedup (and other) data under controlled and ideal assumptions regarding issues such as number of processor, scheduling algorithm and overheads, etc. The results obtained can be used for example to evalúate the ideal parallelism that a program contains for a given model of execution and to compare such "perfect" parallelism to that obtained by a given implementation of that model. We also present a tool, IDRA, which implements the proposed method, and results obtained with IDRA for benchmark programs, which are then compared with those obtained in actual executions on real parallel systems.
Resumo:
The analysis of concurrent constraint programs is a challenge due to the inherently concurrent behaviour of its computational model. However, most implementations of the concurrent paradigm can be viewed as a computation with a fixed scheduling rule which suspends some goals so that their execution is postponed until some condition awakens them. For a certain kind of properties, an analysis defined in these terms is correct. Furthermore, it is much more tractable, and in addition can make use of existing analysis technology for the underlying fixed computation rule. We show how this can be done when the starting point is a framework for the analysis of sequential programs. The resulting analysis, which incorporates suspensions, is adequate for concurrent models where concurrency is localized, e.g. the Andorra model. We refine the analysis for this particular case. Another model in which concurrency is preferably encapsulated, and thus suspensions are local to parts of the computation, is that of CIAO. Nonetheless, the analysis scheme can be generalized to models with global concurrency. We also sketch how this could be done, and we show how the resulting analysis framework could be used for analyzing typical properties, such as suspensión freeness.
Resumo:
Dynamic scheduling increases the expressive power of logic programming languages, but also introduces some overhead. In this paper we present two classes of program transformations designed to reduce this additional overhead, while preserving the operational semantics of the original programs, modulo ordering of literals woken at the same time. The first class of transformations simplifies the delay conditions while the second class moves delayed literals later in the rule body. Application of the program transformations can be automated using information provided by compile-time analysis. We provide experimental results obtained from an implementation of the proposed techniques using the CIAO prototype compiler. Our results show that the techniques can lead to substantial performance improvement.
Resumo:
In this report we discuss some of the issues involved in the specialization and optimization of constraint logic programs with dynamic scheduling. Dynamic scheduling, as any other form of concurrency, increases the expressive power of constraint logic programs, but also introduces run-time overhead. The objective of the specialization and optimization is to reduce as much as possible such overhead automatically, while preserving the semantics of the original programs. This is done by program transformation based on global analysis. We present implementation techniques for this purpose and report on experimental results obtained from an implementation of the techniques in the context of the CIAO compiler.
Resumo:
The structure of the atmospheric boundary layer (ABL) is modelled with the limited- length-scale k-ε model of Apsley and Castro. Contrary to the standard k-ε model, the limited-length-scale k-ε model imposes a maximum mixing length which is derived from the boundary layer height, for neutral and unstable atmospheric situations, or by Monin-Obukhov length when the atmosphere is stably stratified. The model is first verified reproducing the famous Leipzig wind profile. Then the performance of the model is tested with measurements from FINO-1 platform using sonic anemometers to derive the appropriate maximum mixing length.
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
Brain injury is the leading cause of disability and death in children in the United States. Student re-entry into the school setting following a traumatic brain injury is crucial to student success. Multidisciplinary teams within the school district comprised of individuals with expertise in brain injury are ideal in implementing student specific treatment plans given their specialized training and wide range of expertise addressing student needs. Therefore, the purpose of this study is to develop and initially validate a quantitative instrument that school personnel can use to determine if a student, identified as having a traumatic brain injury, will benefit from district-level consultation from a brain injury team. Three studies were designed to investigate the research questions. In study one, the planning and construction of the DORI-TBI was completed. Study two addressed the content validity of the DORI-TBI through a comparison analysis with other referral forms, content review with experts in the field of TBI, and cognitive interviews with professionals to test the usability of the new screening tool. In study three, a field administration was conducted using vignettes to measure construct validity. Results produced a valid and reliable new screening instrument that can aid school-based teams to more efficiently utilize district level consultation with a brain injury support team.
Resumo:
These days as we are facing extremely powerful attacks on servers over the Internet (say, by the Advanced Persistent Threat attackers or by Surveillance by powerful adversary), Shamir has claimed that “Cryptography is Ineffective”and some understood it as “Cryptography is Dead!” In this talk I will discuss the implications on cryptographic systems design while facing such strong adversaries. Is crypto dead or we need to design it better, taking into account, mathematical constraints, but also systems vulnerability constraints. Can crypto be effective at all when your computer or your cloud is penetrated? What is lost and what can be saved? These are very basic issues at this point of time, when we are facing potential loss of privacy and security.
Resumo:
In this paper a utilization of the high data-rates channels by threading of sending and receiving is studied. As a communication technology evolves the higher speeds are used more and more in various applications. But generating traffic with Gbps data-rates also brings some complications. Especially if UDP protocol is used and it is necessary to avoid packet fragmentation, for example for high-speed reliable transport protocols based on UDP. For such situation the Ethernet network packet size has to correspond to standard 1500 bytes MTU[1], which is widely used in the Internet. System may not has enough capacity to send messages with necessary rate in a single-threaded mode. A possible solution is to use more threads. It can be efficient on widespread multicore systems. Also the fact that in real network non-constant data flow can be expected brings another object of study –- an automatic adaptation to the traffic which is changing during runtime. Cases investigated in this paper include adjusting number of threads to a given speed and keeping speed on a given rate when CPU gets heavily loaded by other processes while sending data.
Resumo:
Mode of access: Internet.
Resumo:
"Serial no. 96-14."
Resumo:
Cover title.
Resumo:
Electronic text and image data.
Resumo:
Electronic text and image data.
Resumo:
Shipping list no.: 97-0343-P.