827 resultados para Multiple-scale processing
Resumo:
This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed
Resumo:
Many discussions about the music processing have occurred over the years. It is stated, on one hand, the existence of a single joint for grasping the music or any of its attributes by the Central Nervous System. Furthermore, it is claimed also the existence of multiple and diverse systems to understand each aspect of music. In general, model-independent set, studies focusing on the processing of sound components, specifically the musical tones, can significantly clarify the basic functioning of the auditory system and other higher brain functions. In this sense, one of the most prominent approaches in the study of sensory and perceptual processes of hearing, or changed unharmed, has been Neuroscience, which is interested in the interaction between the brain areas corresponding to different cognitive processes. Thus, the purpose of this study was to review the studies that dealt processing models of the attributes of tonal Western music, based on the conception that neuropsychological neural structures are interdependent sensory pathways.
Resumo:
El presente trabajo es un capítulo de libro titulado “Anestesia Regional y Periférica Guiada por Ultrasonido en el Paciente Crítico” que será incluido en la última edición del libro “Manual de Ultrasonido en Terapia Intensiva y Emergencias” cuyo editor es el Doctor José de Jesús Rincón Salas y que será publicado por la Editorial Prado de México para distribución latinoamericana desde dicho país. Por solicitud del editor y teniendo en cuenta el enfoque del libro, el presente trabajo está dirigido a estudiantes de formación, médicos graduados y especialistas en las áreas de cuidado intensivo, anestesiología, dolor, medicina interna y medicina de urgencias. Tiene como propósito empapar de conocimientos necesarios y prácticos en anestesia regional a personas que usualmente no han tenido contacto con la anestesia regional, pues desafortunadamente sólo en los últimos años ha sido posible que la anestesia regional haya comenzado a salir de las salas de cirugía, ámbito donde ha estado confinada tradicionalmente. El lenguaje utilizado es sencillo y el capítulo ha sido escrito para que sea fácil de leer y consultar, dejando así mensajes muy claros sobre la utilidad, viabilidad e implicaciones que tiene el uso de anestesia regional guiada por ultrasonido en cuidado intensivo. Los autores esperamos que de esta manera, el presente capítulo permita continuar superando los obstáculos que se interponen entre los invaluables beneficios de la anestesia regional y los pacientes de cuidado intensivo que necesitan de ella.
Resumo:
The first part of this work presents an accurate analysis of the most relevant 3D registration techniques, including initial pose estimation, pairwise registration and multiview registration strategies. A new classification has been proposed, based on both the applications and the approach of the methods that have been discussed. The main contribution of this thesis is the proposal of a new 3D multiview registration strategy. The proposed approach detects revisited regions obtaining cycles of views that are used to reduce the inaccuracies that may exist in the final model due to error propagation. The method takes advantage of both global and local information of the registration process, using graph theory techniques in order correlate multiple views and minimize the propagated error by registering the views in an optimal way. The proposed method has been tested using both synthetic and real data, in order to show and study its behavior and demonstrate its reliability.
Resumo:
This thesis studies robustness against large-scale failures in communications networks. If failures are isolated, they usually go unnoticed by users thanks to recovery mechanisms. However, such mechanisms are not effective against large-scale multiple failures. Large-scale failures may cause huge economic loss. A key requirement towards devising mechanisms to lessen their impact is the ability to evaluate network robustness. This thesis focuses on multilayer networks featuring separated control and data planes. The majority of the existing measures of robustness are unable to capture the true service degradation in such a setting, because they rely on purely topological features. One of the major contributions of this thesis is a new measure of functional robustness. The failure dynamics is modeled from the perspective of epidemic spreading, for which a new epidemic model is proposed. Another contribution is a taxonomy of multiple, large-scale failures, adapted to the needs and usage of the field of networking.
Resumo:
The effect of multiple sclerosis (MS) on the ability to identify emotional expressions in faces was investigated, and possible associations with patients’ characteristics were explored. 56 non-demented MS patients and 56 healthy subjects (HS) with similar demographic characteristics performed an emotion recognition task (ERT), the Benton Facial Recognition Test (BFRT), and answered the Hospital Anxiety and Depression Scale (HADS). Additionally, MS patients underwent a neurological examination and a comprehensive neuropsychological evaluation. The ERT consisted of 42 pictures of faces (depicting anger, disgust, fear, happiness, sadness, surprise and neutral expressions) from the NimStim set. An iViewX high-speed eye tracker was used to record eye movements during ERT. The fixation times were calculated for two regions of interest (i.e., eyes and rest of the face). No significant differences were found between MS and HC on ERT’s behavioral and oculomotor measures. Bivariate and multiple regression analyses revealed significant associations between ERT’s behavioral performance and demographic, clinical, psychopathological, and cognitive measures.
Resumo:
Common Loon (Gavia immer) is considered an emblematic and ecologically important example of aquatic-dependent wildlife in North America. The northern breeding range of Common Loon has contracted over the last century as a result of habitat degradation from human disturbance and lakeshore development. We focused on the state of New Hampshire, USA, where a long-term monitoring program conducted by the Loon Preservation Committee has been collecting biological data on Common Loon since 1976. The Common Loon population in New Hampshire is distributed throughout the state across a wide range of lake-specific habitats, water quality conditions, and levels of human disturbance. We used a multiscale approach to evaluate the association of Common Loon and breeding habitat within three natural physiographic ecoregions of New Hampshire. These multiple scales reflect Common Loon-specific extents such as territories, home ranges, and lake-landscape influences. We developed ecoregional multiscale models and compared them to single-scale models to evaluate model performance in distinguishing Common Loon breeding habitat. Based on information-theoretic criteria, there is empirical support for both multiscale and single-scale models across all three ecoregions, warranting a model-averaging approach. Our results suggest that the Common Loon responds to both ecological and anthropogenic factors at multiple scales when selecting breeding sites. These multiscale models can be used to identify and prioritize the conservation of preferred nesting habitat for Common Loon populations.
Resumo:
This paper presents the development of an indoor localization system using camera vision. The localization system has a capability to determine 2D coordinate (x, y) for a team of mobile robots, Miabot. The experimental results show that the system outperforms our existing sonar localizer both in accuracy and a precision.
Resumo:
In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by U-238 and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (<= 8.8 Bq/g) of U-238 Were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (<= 11 Bq/g) of Ra-226 were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper considers the potential contribution of secondary quantitative analyses of large scale surveys to the investigation of 'other' childhoods. Exploring other childhoods involves investigating the experience of young people who are unequally positioned in relation to multiple, embodied, identity locations, such as (dis)ability, 'class', gender, sexuality, ethnicity and race. Despite some possible advantages of utilising extensive databases, the paper outlines a number of methodological problems with existing surveys which tend to reinforce adultist and broader hierarchical social relations. It is contended that scholars of children's geographies could overcome some of these problematic aspects of secondary data sources by endeavouring to transform the research relations of large scale surveys. Such endeavours would present new theoretical, ethical and methodological complexities, which are briefly considered.
Resumo:
With both climate change and air quality on political and social agendas from local to global scale, the links between these hitherto separate fields are becoming more apparent. Black carbon, largely from combustion processes, scatters and absorbs incoming solar radiation, contributes to poor air quality and induces respiratory and cardiovascular problems. Uncertainties in the amount, location, size and shape of atmospheric black carbon cause large uncertainty in both climate change estimates and toxicology studies alike. Increased research has led to new effects and areas of uncertainty being uncovered. Here we draw together recent results and explore the increasing opportunities for synergistic research that will lead to improved confidence in the impact of black carbon on climate change, air quality and human health. Topics of mutual interest include better information on spatial distribution, size, mixing state and measuring and monitoring. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.
Resumo:
Uncertainties associated with the representation of various physical processes in global climate models (GCMs) mean that, when projections from GCMs are used in climate change impact studies, the uncertainty propagates through to the impact estimates. A complete treatment of this ‘climate model structural uncertainty’ is necessary so that decision-makers are presented with an uncertainty range around the impact estimates. This uncertainty is often underexplored owing to the human and computer processing time required to perform the numerous simulations. Here, we present a 189-member ensemble of global river runoff and water resource stress simulations that adequately address this uncertainty. Following several adaptations and modifications, the ensemble creation time has been reduced from 750 h on a typical single-processor personal computer to 9 h of high-throughput computing on the University of Reading Campus Grid. Here, we outline the changes that had to be made to the hydrological impacts model and to the Campus Grid, and present the main results. We show that, although there is considerable uncertainty in both the magnitude and the sign of regional runoff changes across different GCMs with climate change, there is much less uncertainty in runoff changes for regions that experience large runoff increases (e.g. the high northern latitudes and Central Asia) and large runoff decreases (e.g. the Mediterranean). Furthermore, there is consensus that the percentage of the global population at risk to water resource stress will increase with climate change.
Resumo:
Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.
Resumo:
To construct Biodiversity richness maps from Environmental Niche Models (ENMs) of thousands of species is time consuming. A separate species occurrence data pre-processing phase enables the experimenter to control test AUC score variance due to species dataset size. Besides, removing duplicate occurrences and points with missing environmental data, we discuss the need for coordinate precision, wide dispersion, temporal and synonymity filters. After species data filtering, the final task of a pre-processing phase should be the automatic generation of species occurrence datasets which can then be directly ’plugged-in’ to the ENM. A software application capable of carrying out all these tasks will be a valuable time-saver particularly for large scale biodiversity studies.