794 resultados para Multi-sector New Keynesian DSGE models
Resumo:
The majority of reported learning methods for Takagi-Sugeno-Kang fuzzy neural models to date mainly focus on the improvement of their accuracy. However, one of the key design requirements in building an interpretable fuzzy model is that each obtained rule consequent must match well with the system local behaviour when all the rules are aggregated to produce the overall system output. This is one of the distinctive characteristics from black-box models such as neural networks. Therefore, how to find a desirable set of fuzzy partitions and, hence, to identify the corresponding consequent models which can be directly explained in terms of system behaviour presents a critical step in fuzzy neural modelling. In this paper, a new learning approach considering both nonlinear parameters in the rule premises and linear parameters in the rule consequents is proposed. Unlike the conventional two-stage optimization procedure widely practised in the field where the two sets of parameters are optimized separately, the consequent parameters are transformed into a dependent set on the premise parameters, thereby enabling the introduction of a new integrated gradient descent learning approach. A new Jacobian matrix is thus proposed and efficiently computed to achieve a more accurate approximation of the cost function by using the second-order Levenberg-Marquardt optimization method. Several other interpretability issues about the fuzzy neural model are also discussed and integrated into this new learning approach. Numerical examples are presented to illustrate the resultant structure of the fuzzy neural models and the effectiveness of the proposed new algorithm, and compared with the results from some well-known methods.
Resumo:
On multiprocessors with explicitly managed memory hierarchies (EMM), software has the responsibility of moving data in and out of fast local memories. This task can be complex and error-prone even for expert programmers. Before we can allow compilers to handle the complexity for us, we must identify the abstractions that are general enough to allow us to write applications with reasonable effort, yet speci?c enough to exploit the vast on-chip memory bandwidth of EMM multi-processors. To this end, we compare two programming models against hand-tuned codes on the STI Cell, paying attention to programmability and performance. The ?rst programming model, Sequoia, abstracts the memory hierarchy as private address spaces, each corresponding to a parallel task. The second, Cellgen, is a new framework which provides OpenMP-like semantics and the abstraction of a shared address spaces divided into private and shared data. We compare three applications programmed using these models against their hand-optimized counterparts in terms of abstractions, programming complexity, and performance.
Resumo:
Classical radiation biology research has centred on nuclear DNA as the main target of radiation-induced damage. Over the past two decades, this has been challenged by a significant amount of scientific evidence clearly showing radiation-induced cell signalling effects to have important roles in mediating overall radiobiological response. These effects, generally termed radiation-induced bystander effects (RIBEs) have challenged the traditional DNA targeted theory in radiation biology and highlighted an important role for cells not directly traversed by radiation. The multiplicity of experimental systems and exposure conditions in which RIBEs have been observed has hindered precise definitions of these effects. However, RIBEs have recently been classified for different relevant human radiation exposure scenarios in an attempt to clarify their role in vivo. Despite significant research efforts in this area, there is little direct evidence for their role in clinically relevant exposure scenarios. In this review, we explore the clinical relevance of RIBEs from classical experimental approaches through to novel models that have been used to further determine their potential implications in the clinic.
Resumo:
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the 'central place' and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in . Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of . M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour. © 2011 Gesellschaft für ökologie.
Resumo:
This paper presents a scalable, statistical ‘black-box’ model for predicting the performance of parallel programs on multi-core non-uniform memory access (NUMA) systems. We derive a model with low overhead, by reducing data collection and model training time. The model can accurately predict the behaviour of parallel applications in response to changes in their concurrency, thread layout on NUMA nodes, and core voltage and frequency. We present a framework that applies the model to achieve significant energy and energy-delay-square (ED2) savings (9% and 25%, respectively) along with performance improvement (10% mean) on an actual 16-core NUMA system running realistic application workloads. Our prediction model proves substantially more accurate than previous efforts.
Resumo:
This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.
Resumo:
Aims/hypothesis
The genetic determinants of diabetic nephropathy remain poorly understood. We aimed to identify novel susceptibility genes for diabetic nephropathy.
MethodsWe performed a genome-wide association study using 1000 Genomes-based imputation to compare type 1 diabetic nephropathy cases with proteinuria and with or without renal failure with control patients who have had diabetes for more than 15 years and no evidence of renal disease.
ResultsNone of the single nucleotide polymorphisms (SNPs) tested in a discovery cohort composed of 683 cases and 779 controls reached genome-wide statistical significance. The 46 top hits (p < 10−5) were then sought for first-stage analysis in the Genetics of Kidneys in Diabetes US (US-GoKinD) study, an independent population of 820 cases and 885 controls. Two SNPs in strong linkage disequilibrium with each other and located in the SORBS1 gene were consistently and significantly (p < 10−4) associated with diabetic nephropathy. The minor rs1326934-C allele was less frequent in cases than in controls (0.34 vs 0.43) and was associated with a decreased risk for diabetic nephropathy (OR 0.70; 95% CI 0.60, 0.82). However, this association was not observed in a second stage with two additional diabetic nephropathy cohorts, the All Ireland-Warren 3-Genetics of Kidneys in Diabetes UK and Republic of Ireland (UK-ROI; p = 0.15) and the Finnish Diabetic Nephropathy (FinnDiane; p = 0.44) studies, totalling 2,142 cases and 2,494 controls. Altogether, the random-effect meta-analysed rs1326934-C allele OR for diabetic nephropathy was 0.83 (95% CI 0.72, 0.96; p = 0.009).
Conclusions/interpretationThese data suggest that SORBS1 might be a gene involved in diabetic nephropathy.
Resumo:
Renewable energy is high on international and national agendas. Currently, grid-connected photovoltaic (PV) systems are a popular technology to convert solar energy into electricity. Existing PV panels have a relatively low and varying output voltage so that the converter installed between the PVs and the grid should be equipped with high step-up and versatile control capabilities. In addition, the output current of PV systems is rich in harmonics which affect the power quality of the grid. In this paper, a new multi-stage hysteresis control of a step-up DC-DC converter is proposed for integrating PVs into a single-phase power grid. The proposed circuitry and control method is experimentally validated by testing on a 600W prototype converter. The developed technology has significant economic implications and could be applied to many distributed generation (DG) systems, especially for the developing countries which have a large number of small PVs connected to their single-phase distribution network.