884 resultados para Multi-objective function
Resumo:
The Gauss-Marquardt-Levenberg (GML) method of computer-based parameter estimation, in common with other gradient-based approaches, suffers from the drawback that it may become trapped in local objective function minima, and thus report optimized parameter values that are not, in fact, optimized at all. This can seriously degrade its utility in the calibration of watershed models where local optima abound. Nevertheless, the method also has advantages, chief among these being its model-run efficiency, and its ability to report useful information on parameter sensitivities and covariances as a by-product of its use. It is also easily adapted to maintain this efficiency in the face of potential numerical problems (that adversely affect all parameter estimation methodologies) caused by parameter insensitivity and/or parameter correlation. The present paper presents two algorithmic enhancements to the GML method that retain its strengths, but which overcome its weaknesses in the face of local optima. Using the first of these methods an intelligent search for better parameter sets is conducted in parameter subspaces of decreasing dimensionality when progress of the parameter estimation process is slowed either by numerical instability incurred through problem ill-posedness, or when a local objective function minimum is encountered. The second methodology minimizes the chance of successive GML parameter estimation runs finding the same objective function minimum by starting successive runs at points that are maximally removed from previous parameter trajectories. As well as enhancing the ability of a GML-based method to find the global objective function minimum, the latter technique can also be used to find the locations of many non-global optima (should they exist) in parameter space. This can provide a useful means of inquiring into the well-posedness of a parameter estimation problem, and for detecting the presence of bimodal parameter and predictive probability distributions. The new methodologies are demonstrated by calibrating a Hydrological Simulation Program-FORTRAN (HSPF) model against a time series of daily flows. Comparison with the SCE-UA method in this calibration context demonstrates a high level of comparative model run efficiency for the new method. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The first step in conservation planning is to identify objectives. Most stated objectives for conservation, such as to maximize biodiversity outcomes, are too vague to be useful within a decision-making framework. One way to clarify the issue is to define objectives in terms of the risk of extinction for multiple species. Although the assessment of extinction risk for single species is common, few researchers have formulated an objective function that combines the extinction risks of multiple species. We sought to translate the broad goal of maximizing the viability of species into explicit objectives for use in a decision-theoretic approach to conservation planning. We formulated several objective functions based on extinction risk across many species and illustrated the differences between these objectives with simple examples. Each objective function was the mathematical representation of an approach to conservation and emphasized different levels of threat Our objectives included minimizing the joint probability of one or more extinctions, minimizing the expected number of extinctions, and minimizing the increase in risk of extinction from the best-case scenario. With objective functions based on joint probabilities of extinction across species, any correlations in extinction probabilities bad to be known or the resultant decisions were potentially misleading. Additive objectives, such as the expected number of extinctions, did not produce the same anomalies. We demonstrated that the choice of objective function is central to the decision-making process because alternative objective functions can lead to a different ranking of management options. Therefore, decision makers need to think carefully in selecting and defining their conservation goals.
Resumo:
Whilst traditional optimisation techniques based on mathematical programming techniques are in common use, they suffer from their inability to explore the complexity of decision problems addressed using agricultural system models. In these models, the full decision space is usually very large while the solution space is characterized by many local optima. Methods to search such large decision spaces rely on effective sampling of the problem domain. Nevertheless, problem reduction based on insight into agronomic relations and farming practice is necessary to safeguard computational feasibility. Here, we present a global search approach based on an Evolutionary Algorithm (EA). We introduce a multi-objective evaluation technique within this EA framework, linking the optimisation procedure to the APSIM cropping systems model. The approach addresses the issue of system management when faced with a trade-off between economic and ecological consequences.
Resumo:
This paper presents an approach for optimal design of a fully regenerative dynamic dynamometer using genetic algorithms. The proposed dynamometer system includes an energy storage mechanism to adaptively absorb the energy variations following the dynamometer transients. This allows the minimum power electronics requirement at the mains power supply grid to compensate for the losses. The overall dynamometer system is a dynamic complex system and design of the system is a multi-objective problem, which requires advanced optimisation techniques such as genetic algorithms. The case study of designing and simulation of the dynamometer system indicates that the genetic algorithm based approach is able to locate a best available solution in view of system performance and computational costs.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
Obtaining wind vectors over the ocean is important for weather forecasting and ocean modelling. Several satellite systems used operationally by meteorological agencies utilise scatterometers to infer wind vectors over the oceans. In this paper we present the results of using novel neural network based techniques to estimate wind vectors from such data. The problem is partitioned into estimating wind speed and wind direction. Wind speed is modelled using a multi-layer perceptron (MLP) and a sum of squares error function. Wind direction is a periodic variable and a multi-valued function for a given set of inputs; a conventional MLP fails at this task, and so we model the full periodic probability density of direction conditioned on the satellite derived inputs using a Mixture Density Network (MDN) with periodic kernel functions. A committee of the resulting MDNs is shown to improve the results.
Resumo:
This work follows a feasibility study (187) which suggested that a process for purifying wet-process phosphoric acid by solvent extraction should be economically viable. The work was divided into two main areas, (i) chemical and physical measurements on the three-phase system, with or without impurities; (ii) process simulation and optimization. The object was to test the process technically and economically and to optimise the type of solvent. The chemical equilibria and distribution curves for the system water - phosphoric acid - solvent for the solvents n-amyl alcohol, tri-n-butyl phosphate, di-isopropyl ether and methyl isobutyl ketone have been determined. Both pure phosphoric acid and acid containing known amounts of naturally occurring impurities (Fe P0 4 , A1P0 4 , Ca3(P04)Z and Mg 3(P0 4 )Z) were examined. The hydrodynamic characteristics of the systems were also studied. The experimental results obtained for drop size distribution were compared with those obtainable from Hinze's equation (32) and it was found that they deviated by an amount related to the turbulence. A comprehensive literature survey on the purification of wet-process phosphoric acid by organic solvents has been made. The literature regarding solvent extraction fundamentals and equipment and optimization methods for the envisaged process was also reviewed. A modified form of the Kremser-Brown and Souders equation to calculate the number of contact stages was derived. The modification takes into account the special nature of phosphoric acid distribution curves in the studied systems. The process flow-sheet was developed and simulated. Powell's direct search optimization method was selected in conjunction with the linear search algorithm of Davies, Swann and Campey. The objective function was defined as the total annual manufacturing cost and the program was employed to find the optimum operating conditions for anyone of the chosen solvents. The final results demonstrated the following order of feasibility to purify wet-process acid: di-isopropyl ether, methylisobutyl ketone, n-amyl alcohol and tri-n-butyl phosphate.
Resumo:
This paper introduces a new mathematical method for improving the discrimination power of data envelopment analysis and to completely rank the efficient decision-making units (DMUs). Fuzzy concept is utilised. For this purpose, first all DMUs are evaluated with the CCR model. Thereafter, the resulted weights for each output are considered as fuzzy sets and are then converted to fuzzy numbers. The introduced model is a multi-objective linear model, endpoints of which are the highest and lowest of the weighted values. An added advantage of the model is its ability to handle the infeasibility situation sometimes faced by previously introduced models.
Resumo:
Nearest feature line-based subspace analysis is first proposed in this paper. Compared with conventional methods, the newly proposed one brings better generalization performance and incremental analysis. The projection point and feature line distance are expressed as a function of a subspace, which is obtained by minimizing the mean square feature line distance. Moreover, by adopting stochastic approximation rule to minimize the objective function in a gradient manner, the new method can be performed in an incremental mode, which makes it working well upon future data. Experimental results on the FERET face database and the UCI satellite image database demonstrate the effectiveness.
Resumo:
Data envelopment analysis (DEA) as introduced by Charnes, Cooper, and Rhodes (1978) is a linear programming technique that has widely been used to evaluate the relative efficiency of a set of homogenous decision making units (DMUs). In many real applications, the input-output variables cannot be precisely measured. This is particularly important in assessing efficiency of DMUs using DEA, since the efficiency score of inefficient DMUs are very sensitive to possible data errors. Hence, several approaches have been proposed to deal with imprecise data. Perhaps the most popular fuzzy DEA model is based on a-cut. One drawback of the a-cut approach is that it cannot include all information about uncertainty. This paper aims to introduce an alternative linear programming model that can include some uncertainty information from the intervals within the a-cut approach. We introduce the concept of "local a-level" to develop a multi-objective linear programming to measure the efficiency of DMUs under uncertainty. An example is given to illustrate the use of this method.
Resumo:
Linear programming (LP) is the most widely used optimization technique for solving real-life problems because of its simplicity and efficiency. Although conventional LP models require precise data, managers and decision makers dealing with real-world optimization problems often do not have access to exact values. Fuzzy sets have been used in the fuzzy LP (FLP) problems to deal with the imprecise data in the decision variables, objective function and/or the constraints. The imprecisions in the FLP problems could be related to (1) the decision variables; (2) the coefficients of the decision variables in the objective function; (3) the coefficients of the decision variables in the constraints; (4) the right-hand-side of the constraints; or (5) all of these parameters. In this paper, we develop a new stepwise FLP model where fuzzy numbers are considered for the coefficients of the decision variables in the objective function, the coefficients of the decision variables in the constraints and the right-hand-side of the constraints. In the first step, we use the possibility and necessity relations for fuzzy constraints without considering the fuzzy objective function. In the subsequent step, we extend our method to the fuzzy objective function. We use two numerical examples from the FLP literature for comparison purposes and to demonstrate the applicability of the proposed method and the computational efficiency of the procedures and algorithms. © 2013-IOS Press and the authors. All rights reserved.
Resumo:
Aims - To characterize the population pharmacokinetics of ranitidine in critically ill children and to determine the influence of various clinical and demographic factors on its disposition. Methods - Data were collected prospectively from 78 paediatric patients (n = 248 plasma samples) who received oral or intravenous ranitidine for prophylaxis against stress ulcers, gastrointestinal bleeding or the treatment of gastro-oesophageal reflux. Plasma samples were analysed using high-performance liquid chromatography, and the data were subjected to population pharmacokinetic analysis using nonlinear mixed-effects modelling. Results - A one-compartment model best described the plasma concentration profile, with an exponential structure for interindividual errors and a proportional structure for intra-individual error. After backward stepwise elimination, the final model showed a significant decrease in objective function value (−12.618; P < 0.001) compared with the weight-corrected base model. Final parameter estimates for the population were 32.1 l h−1 for total clearance and 285 l for volume of distribution, both allometrically modelled for a 70 kg adult. Final estimates for absorption rate constant and bioavailability were 1.31 h−1 and 27.5%, respectively. No significant relationship was found between age and weight-corrected ranitidine pharmacokinetic parameters in the final model, with the covariate for cardiac failure or surgery being shown to reduce clearance significantly by a factor of 0.46. Conclusions - Currently, ranitidine dose recommendations are based on children's weights. However, our findings suggest that a dosing scheme that takes into consideration both weight and cardiac failure/surgery would be more appropriate in order to avoid administration of higher or more frequent doses than necessary.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • The cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself. • Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDS • The first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed. • The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates. • The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. AIMS - To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. METHODS - Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m−2 day−1). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. RESULTS - The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P < 0.005) when incorporated as a covariate affecting the fractional metabolic transformation of 6-MP into 6-TGNs. The other genetic covariates tested were not statistically significant and therefore were not included in the final model. CONCLUSIONS - The developed pharmacokinetic model (if successful at external validation) would offer a more rational dosing approach for 6-MP than the traditional empirical method since it combines the current practice of using body surface area in 6-MP dosing with a pharmacogenetically guided dosing based on TPMT genotype.
Resumo:
We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.
Resumo:
In this paper the effects of introducing novelty search in evolutionary art are explored. Our algorithm combines fitness and novelty metrics to frame image evolution as a multi-objective optimisation problem, promoting the creation of images that are both suitable and diverse. The method is illustrated by using two evolutionary art engines for the evolution of figurative objects and context free design grammars. The results demonstrate the ability of the algorithm to obtain a larger set of fit images compared to traditional fitness-based evolution, regardless of the engine used.