957 resultados para Monetary Dynamic Models
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The power system stability analysis is approached taking into explicit account the dynamic performance of generators internal voltages and control devices. The proposed method is not a direct method in the usual sense since conclusion for stability or instability is not exclusively based on energy function considerations but it is automatic since the conclusion is achieved without an analyst intervention. The stability test accounts for the nonconservative nature of the system with control devices such as the automatic voltage regulator (AVR) and automatic generation control (AGC) in contrast with the well-known direct methods. An energy function is derived for the system with machines forth-order model, AVR and AGC and it is used to start the analysis procedure and to point out criticalities. The conclusive analysis itself is made by means of a method based on the definition of a region surrounding the equilibrium point where the system net torque is equilibrium restorative. This region is named positive synchronization region (PSR). Since the definition of the PSR boundaries have no dependence on modelling approximation, the PSR test conduces to reliable results. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the dynamic behaviour of the "click" mechanism is analysed. A more accurate model is used than in the past, in which the limits of movement due to the geometry of the flight mechanism are imposed. Moreover, the effects of different damping models are investigated. In previous work, the damping model was assumed to be of the linear viscous type for simplicity, but it is likely that the damping due to drag forces is nonlinear. Accordingly, a model of damping in which the damping force is proportional to the square of the velocity is used, and the results are compared with the simpler model of linear viscous damping. Because of the complexity of the model an analytical approach is not possible so the problem has been cast in terms of non-dimensional variables and solved numerically. The peak kinetic energy of the wing root per energy input in one cycle is chosen to study the effectiveness of the "click" mechanism compared with a linear resonant mechanism. It is shown that, the "click" mechanism has distinct advantages when it is driven below its resonant frequency. When the damping is quadratic, there are some further advantages compared to when the damping is linear and viscous, provided that the amplitude of the excitation force is large enough to avoid the erratic behaviour of the mechanism that occurs for small forces. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This work studies through the Floquet theory the stability of breathers generated by the anti-continuous limit. We used the Peyrard-Bishop model for DNA and two kinds of nonlinear potential: the Morse potential and a potential with a hump. The comparison of their stability was done in function of the coupling parameter. We also investigate the dynamic behaviour of the system in stable and unstable regions. Qualitatively, the dynamic of mobile breathers resembles DNA.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Dynamic viscosity of binary mixtures of poly(ethylene glycol) molar mass 1500 da + water, potassium phosphate + water, and ternary mixtures of poly(ethylene glycol) molar mass 1500 da + potassium phosphate + water were determined at 303.15 K Binary and ternary mixture viscosities showed a direct logarithm-type relation with the increase of poly(ethylene glycol) and potassium phosphate contents. The models used for viscosity correlation gave a good fit to the experimental data.
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
Although conventional rotating machines have been largely used to drive underground transportation systems, linear induction motors are also being considered for future applications owing to their indisputable advantages. A mathematical model for the transient behavior analysis of linear induction motors, when operating with constant r.m.s. currents, is presented in this paper. Operating conditions, like phase short-circuit and input frequency variations and also some design characteristics, such as air-gap and secondary resistivity variations, can be considered by means of this modeling. The basis of the mathematical modeling is presented. Experimental results obtained in the laboratory are compared with the corresponding simulations and discussed in this paper.
Resumo:
The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.
Resumo:
This paper is the result of real-scale physical modeling study designed to simulate the load-deformation characteristics of railroad foundation systems that include the railroad ties, the ballast, and the sub-base layers of a railroad embankment. The study presents comparisons of the application of dynamic loads of 100kN on the rails, and the resulting deformations during a 500,000 cycle testing period for three rail support systems; wood, concrete and steel. The results show that the deformation curve has an exponential shape, with the larger portion of the deformation occurring during the first 50,000 load cycles followed by a tendency to stabilize between 100,000 to 500,000 cycles. These results indicate that the critical phase of deformations of a new railroad is within the first 50,000 cycles of loading, and after that, it slowly attenuates as it approaches a stable value. The paper also presents empirically derived formulations for the estimation of the deformations of the rail supports as a result of rail traffic.
Resumo:
Includes bibliography
Resumo:
Once defined the relationship between the Starter Motor components and their functions, it is possible to develop a mathematical model capable to predict the Starter behavior during operation. One important aspect is the engagement system behavior. The development of a mathematical tool capable of predicting it is a valuable step in order to reduce the design time, cost and engineering efforts. A mathematical model, represented by differential equations, can be developed using physics laws, evaluating force balance and energy flow through the systems degrees of freedom. Another important physical aspect to be considered in this modeling is the impact conditions (particularly on the pinion and ring-gear contact). This work is a report of those equations application on available mathematical software and the resolution of those equations by Runge-Kutta's numerical integration method, in order to build an accessible engineering tool. Copyright © 2011 SAE International.
Resumo:
Although dynamic and stretching exercises have been widely investigated, there is little information about warm up performed by tag games. Thus, the purpose of the present study was to verify the acute effect of dynamic exercises compared to a tag game warm up on agility and vertical jump in children. 25 boys and 24 girls participated in this study and performed the agility and vertical jump tests after warm up based on dynamic exercises or as a tag game lasting 10 min each in two different days randomly. Dynamic exercises warm up consisted in a run lasting 2.5 min followed by 2 series of 8 dynamic exercises lasting 10 seconds each interspersed with 20s of light run to recovery. Tag game warm up was performed by a tag game with two variations lasting 5 min each. The first variation there was a single cather, which aimed to get the other participants by touching hands. In the second part of the game, the rules were the same except that the participant that was caught had to help the catcher forming a team of catchers. Warm up intensity was monitored by OMNI perceived exertion scale. ANOVA 2x2 for repeated measures (Warm up x Sex) demonstrated no significant differences between dynamic exercises and tag game for agility and vertical jump (P>0.05) for boys and girls. Perceived exertion was significantly higher in tag game compared to dynamic exercises on girls (P<0.05). Both warm up models showed similar acute effects on agility and vertical jump in children. © Faculty of Education. University of Alicante.
Resumo:
The medium term hydropower scheduling (MTHS) problem involves an attempt to determine, for each time stage of the planning period, the amount of generation at each hydro plant which will maximize the expected future benefits throughout the planning period, while respecting plant operational constraints. Besides, it is important to emphasize that this decision-making has been done based mainly on inflow earliness knowledge. To perform the forecast of a determinate basin, it is possible to use some intelligent computational approaches. In this paper one considers the Dynamic Programming (DP) with the inflows given by their average values, thus turning the problem into a deterministic one which the solution can be obtained by deterministic DP (DDP). The performance of the DDP technique in the MTHS problem was assessed by simulation using the ensemble prediction models. Features and sensitivities of these models are discussed. © 2012 IEEE.