975 resultados para Models, Educational
Resumo:
Comunicação apresentada na 4th Annual ICPA - International Conference on Public Administration "Building bridges to the future: leadership and collaboration in public administration", na Universidade de Minnesota nos Estados Unidos, de 24 a 26 de setembro de 2008
Resumo:
1st European IAHR Congress,6-4 May, Edinburg, Scotland
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores – Sistemas Digitais e Percepcionais pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
This paper addresses the estimation of surfaces from a set of 3D points using the unified framework described in [1]. This framework proposes the use of competitive learning for curve estimation, i.e., a set of points is defined on a deformable curve and they all compete to represent the available data. This paper extends the use of the unified framework to surface estimation. It o shown that competitive learning performes better than snakes, improving the model performance in the presence of concavities and allowing to desciminate close surfaces. The proposed model is evaluated in this paper using syntheticdata and medical images (MRI and ultrasound images).
Resumo:
Comunicação apresentada no Congresso do IIAS-IISA no âmbito do IX Grupo de Estudo: Serviço público e política, realizado em Ifrane, Marrocos de 13 a 17 de junho de 2014
Resumo:
Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.
Resumo:
Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.
Resumo:
In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.
Resumo:
This work concerns dynamics and bifurcations properties of a new class of continuous-defined one-dimensional maps: Tsoularis-Wallace's functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon of extinction. To establish this result we introduce the notions of Allee's functions, Allee's effect region and Allee's bifurcation curve. Another central point of our investigation is the study of bifurcation structures for this class of functions, in a three-dimensional parameter space. We verified that under some sufficient conditions, Tsoularis-Wallace's functions have particular bifurcation structures: the big bang and the double big bang bifurcations of the so-called "box-within-a-box" type. The double big bang bifurcations are related to the existence of flip codimension-2 points. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct kinds of boxes. This work contributes to clarify the big bang bifurcation analysis for continuous maps and understand their relationship with explosion birth and extinction phenomena.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertation presented to obtain the PhD degree in Biology/Molecular Biology by Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica
Resumo:
European Journal of Operational Research, nº 73 (1994)
Resumo:
O projeto tem como objetivo desenvolver e avaliar um modelo que facilita o acesso para pessoas surdas ou com deficiência auditiva, o acesso ao conteúdo digital - em particular o conteúdo educacional e objetos de aprendizagem – a criação de condições para uma maior inclusão social de surdos e deficientes auditivos. Pretende-se criar um modelo bidirecional, em que permite a pessoas com deficiências auditivas, possam se comunicar com outras pessoas, com a tradução da Língua Gestual Portuguesa (LGP) para a Língua Portuguesa (LP) e que outras pessoas não portadoras de qualquer deficiência auditiva possam por sua vez comunicar com os surdos ou deficientes auditivos através da tradução da LP para a LGP. Há um conjunto de técnicas que poderíamos nos apoiar para desenvolver o modelo e implementar a API de tradução da LGP em LP. Muitos estudos são feitos com base nos modelos escondidos de Markov (HMM) para efetuar o reconhecimento. Recentemente os estudos estão a caminhar para o uso de técnicas como o “Dynamic Time Warping” (DTW), que tem tido mais sucesso do que outras técnicas em termos de performance e de precisão. Neste projeto optamos por desenvolver a API e o Modelo, com base na técnica de aprendizagem Support Vector Machines (SVM) por ser uma técnica simples de implementar e com bons resultados demonstrados em reconhecimento de padrões. Os resultados obtidos utilizando esta técnica de aprendizagem foram bastante ótimos, como iremos descrever no decorrer do capítulo 4, mesmo sabendo que utilizamos dois dispositivos para capturar dados de descrição de cada gesto. Toda esta tese integra-se no âmbito do projeto científico/ investigação a decorrer no grupo de investigação GILT, sob a coordenação da professora Paula Escudeiro e suportado pela Fundação para Ciência e Tecnologia (FCT).
Resumo:
Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks