924 resultados para Mobile Applications
Resumo:
Within the technological framework of Information and Communication Technologies (ICT), consumers are currently requesting multimedia services with simplicity of use, reliability, security and service availability through mobile and fixed access. Network operators are proposing the Next Generation Networks (NGN) to address the challenges of providing both services and network convergence. Apart from these considerations, there is a need to provide social and healthcare assistance services in order to support the progressive aging in the elderly population. In order to achieve this objective, the Ambient Assisted Living (AAL) initiative proposes ICT systems and services to promote autonomy and an independent life among the elderly. This paper describes the design and implementation of a group of services, called “service enablers”, which helps AAL applications to be supported in NGN. The presented enablers are identified to support the teleconsulting applications requirements in an NGN environment, involving the implementation of a virtual waiting room, a virtual whiteboard, a multimedia multiconference and a vital-signs monitoring presence status. A use case is defined and implemented to evaluate the developed enablers' performance.
Resumo:
En entornos hostiles tales como aquellas instalaciones científicas donde la radiación ionizante es el principal peligro, el hecho de reducir las intervenciones humanas mediante el incremento de las operaciones robotizadas está siendo cada vez más de especial interés. CERN, la Organización Europea para la Investigación Nuclear, tiene alrededor de unos 50 km de superficie subterránea donde robots móviles controlador de forma remota podrían ayudar en su funcionamiento, por ejemplo, a la hora de llevar a cabo inspecciones remotas sobre radiación en los diferentes áreas destinados al efecto. No solo es preciso considerar que los robots deben ser capaces de recorrer largas distancias y operar durante largos periodos de tiempo, sino que deben saber desenvolverse en los correspondientes túneles subterráneos, tener en cuenta la presencia de campos electromagnéticos, radiación ionizante, etc. y finalmente, el hecho de que los robots no deben interrumpir el funcionamiento de los aceleradores. El hecho de disponer de un sistema de comunicaciones inalámbrico fiable y robusto es esencial para la correcta ejecución de las misiones que los robots deben afrontar y por supuesto, para evitar tales situaciones en las que es necesario la recuperación manual de los robots al agotarse su energía o al perder el enlace de comunicaciones. El objetivo de esta Tesis es proveer de las directrices y los medios necesarios para reducir el riesgo de fallo en la misión y maximizar las capacidades de los robots móviles inalámbricos los cuales disponen de almacenamiento finito de energía al trabajar en entornos peligrosos donde no se dispone de línea de vista directa. Para ello se proponen y muestran diferentes estrategias y métodos de comunicación inalámbrica. Teniendo esto en cuenta, se presentan a continuación los objetivos de investigación a seguir a lo largo de la Tesis: predecir la cobertura de comunicaciones antes y durante las misiones robotizadas; optimizar la capacidad de red inalámbrica de los robots móviles con respecto a su posición; y mejorar el rango operacional de esta clase de robots. Por su parte, las contribuciones a la Tesis se citan más abajo. El primer conjunto de contribuciones son métodos novedosos para predecir el consumo de energía y la autonomía en la comunicación antes y después de disponer de los robots en el entorno seleccionado. Esto es importante para proporcionar conciencia de la situación del robot y evitar fallos en la misión. El consumo de energía se predice usando una estrategia propuesta la cual usa modelos de consumo provenientes de diferentes componentes en un robot. La predicción para la cobertura de comunicaciones se desarrolla usando un nuevo filtro de RSS (Radio Signal Strength) y técnicas de estimación con la ayuda de Filtros de Kalman. El segundo conjunto de contribuciones son métodos para optimizar el rango de comunicaciones usando novedosas técnicas basadas en muestreo espacial que son robustas frente a ruidos de campos de detección y radio y que proporcionan redundancia. Se emplean métodos de diferencia central finitos para determinar los gradientes 2D RSS y se usa la movilidad del robot para optimizar el rango de comunicaciones y la capacidad de red. Este método también se valida con un caso de estudio centrado en la teleoperación háptica de robots móviles inalámbricos. La tercera contribución es un algoritmo robusto y estocástico descentralizado para la optimización de la posición al considerar múltiples robots autónomos usados principalmente para extender el rango de comunicaciones desde la estación de control al robot que está desarrollando la tarea. Todos los métodos y algoritmos propuestos se verifican y validan usando simulaciones y experimentos de campo con variedad de robots móviles disponibles en CERN. En resumen, esta Tesis ofrece métodos novedosos y demuestra su uso para: predecir RSS; optimizar la posición del robot; extender el rango de las comunicaciones inalámbricas; y mejorar las capacidades de red de los robots móviles inalámbricos para su uso en aplicaciones dentro de entornos peligrosos, que como ya se mencionó anteriormente, se destacan las instalaciones científicas con emisión de radiación ionizante. En otros términos, se ha desarrollado un conjunto de herramientas para mejorar, facilitar y hacer más seguras las misiones de los robots en entornos hostiles. Esta Tesis demuestra tanto en teoría como en práctica que los robots móviles pueden mejorar la calidad de las comunicaciones inalámbricas mediante la profundización en el estudio de su movilidad para optimizar dinámicamente sus posiciones y mantener conectividad incluso cuando no existe línea de vista. Los métodos desarrollados en la Tesis son especialmente adecuados para su fácil integración en robots móviles y pueden ser aplicados directamente en la capa de aplicación de la red inalámbrica. ABSTRACT In hostile environments such as in scientific facilities where ionising radiation is a dominant hazard, reducing human interventions by increasing robotic operations are desirable. CERN, the European Organization for Nuclear Research, has around 50 km of underground scientific facilities, where wireless mobile robots could help in the operation of the accelerator complex, e.g. in conducting remote inspections and radiation surveys in different areas. The main challenges to be considered here are not only that the robots should be able to go over long distances and operate for relatively long periods, but also the underground tunnel environment, the possible presence of electromagnetic fields, radiation effects, and the fact that the robots shall in no way interrupt the operation of the accelerators. Having a reliable and robust wireless communication system is essential for successful execution of such robotic missions and to avoid situations of manual recovery of the robots in the event that the robot runs out of energy or when the robot loses its communication link. The goal of this thesis is to provide means to reduce risk of mission failure and maximise mission capabilities of wireless mobile robots with finite energy storage capacity working in a radiation environment with non-line-of-sight (NLOS) communications by employing enhanced wireless communication methods. Towards this goal, the following research objectives are addressed in this thesis: predict the communication range before and during robotic missions; optimise and enhance wireless communication qualities of mobile robots by using robot mobility and employing multi-robot network. This thesis provides introductory information on the infrastructures where mobile robots will need to operate, the tasks to be carried out by mobile robots and the problems encountered in these environments. The reporting of research work carried out to improve wireless communication comprises an introduction to the relevant radio signal propagation theory and technology followed by explanation of the research in the following stages: An analysis of the wireless communication requirements for mobile robot for different tasks in a selection of CERN facilities; predictions of energy and communication autonomies (in terms of distance and time) to reduce risk of energy and communication related failures during missions; autonomous navigation of a mobile robot to find zone(s) of maximum radio signal strength to improve communication coverage area; and autonomous navigation of one or more mobile robots acting as mobile wireless relay (repeater) points in order to provide a tethered wireless connection to a teleoperated mobile robot carrying out inspection or radiation monitoring activities in a challenging radio environment. The specific contributions of this thesis are outlined below. The first sets of contributions are novel methods for predicting the energy autonomy and communication range(s) before and after deployment of the mobile robots in the intended environments. This is important in order to provide situational awareness and avoid mission failures. The energy consumption is predicted by using power consumption models of different components in a mobile robot. This energy prediction model will pave the way for choosing energy-efficient wireless communication strategies. The communication range prediction is performed using radio signal propagation models and applies radio signal strength (RSS) filtering and estimation techniques with the help of Kalman filters and Gaussian process models. The second set of contributions are methods to optimise the wireless communication qualities by using novel spatial sampling based techniques that are robust to sensing and radio field noises and provide redundancy features. Central finite difference (CFD) methods are employed to determine the 2-D RSS gradients and use robot mobility to optimise the communication quality and the network throughput. This method is also validated with a case study application involving superior haptic teleoperation of wireless mobile robots where an operator from a remote location can smoothly navigate a mobile robot in an environment with low-wireless signals. The third contribution is a robust stochastic position optimisation algorithm for multiple autonomous relay robots which are used for wireless tethering of radio signals and thereby to enhance the wireless communication qualities. All the proposed methods and algorithms are verified and validated using simulations and field experiments with a variety of mobile robots available at CERN. In summary, this thesis offers novel methods and demonstrates their use to predict energy autonomy and wireless communication range, optimise robots position to improve communication quality and enhance communication range and wireless network qualities of mobile robots for use in applications in hostile environmental characteristics such as scientific facilities emitting ionising radiations. In simpler terms, a set of tools are developed in this thesis for improving, easing and making safer robotic missions in hostile environments. This thesis validates both in theory and experiments that mobile robots can improve wireless communication quality by exploiting robots mobility to dynamically optimise their positions and maintain connectivity even when the (radio signal) environment possess non-line-of-sight characteristics. The methods developed in this thesis are well-suited for easier integration in mobile robots and can be applied directly at the application layer of the wireless network. The results of the proposed methods have outperformed other comparable state-of-the-art methods.
Resumo:
Pervasive computing offers new scenarios where users are surrounded by invisible and proactive technology making smart spaces. Although the utility and power of solutions developed using this computer paradigm are proved, there are unresolved problems that hinder their acceptance and inclusion in our private life. Users have problems understanding the operations of a pervasive computing solution, and therefore they should trust that the solution works properly and according to their expectations. Nevertheless, the concept of trust is already framed in a specific use within the ecosystem of applications that can populate a smart space. To take this concept of trust to the whole space, we propose to study and define the concept of confidence. In contrast to the concept of trust, confidence has deeper psychological implications.
Resumo:
In the last decade, multi-sensor data fusion has become a broadly demanded discipline to achieve advanced solutions that can be applied in many real world situations, either civil or military. In Defence,accurate detection of all target objects is fundamental to maintaining situational awareness, to locating threats in the battlefield and to identifying and protecting strategically own forces. Civil applications, such as traffic monitoring, have similar requirements in terms of object detection and reliable identification of incidents in order to ensure safety of road users. Thanks to the appropriate data fusion technique, we can give these systems the power to exploit automatically all relevant information from multiple sources to face for instance mission needs or assess daily supervision operations. This paper focuses on its application to active vehicle monitoring in a particular area of high density traffic, and how it is redirecting the research activities being carried out in the computer vision, signal processing and machine learning fields for improving the effectiveness of detection and tracking in ground surveillance scenarios in general. Specifically, our system proposes fusion of data at a feature level which is extracted from a video camera and a laser scanner. In addition, a stochastic-based tracking which introduces some particle filters into the model to deal with uncertainty due to occlusions and improve the previous detection output is presented in this paper. It has been shown that this computer vision tracker contributes to detect objects even under poor visual information. Finally, in the same way that humans are able to analyze both temporal and spatial relations among items in the scene to associate them a meaning, once the targets objects have been correctly detected and tracked, it is desired that machines can provide a trustworthy description of what is happening in the scene under surveillance. Accomplishing so ambitious task requires a machine learning-based hierarchic architecture able to extract and analyse behaviours at different abstraction levels. A real experimental testbed has been implemented for the evaluation of the proposed modular system. Such scenario is a closed circuit where real traffic situations can be simulated. First results have shown the strength of the proposed system.
Resumo:
This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.
Resumo:
The development of applications as well as the services for mobile systems faces a varied range of devices with very heterogeneous capabilities whose response times are difficult to predict. The research described in this work aims to respond to this issue by developing a computational model that formalizes the problem and that defines adjusting computing methods. The described proposal combines imprecise computing strategies with cloud computing paradigms in order to provide flexible implementation frameworks for embedded or mobile devices. As a result, the imprecise computation scheduling method on the workload of the embedded system is the solution to move computing to the cloud according to the priority and response time of the tasks to be executed and hereby be able to meet productivity and quality of desired services. A technique to estimate network delays and to schedule more accurately tasks is illustrated in this paper. An application example in which this technique is experimented in running contexts with heterogeneous work loading for checking the validity of the proposed model is described.
Resumo:
In this project, we propose the implementation of a 3D object recognition system which will be optimized to operate under demanding time constraints. The system must be robust so that objects can be recognized properly in poor light conditions and cluttered scenes with significant levels of occlusion. An important requirement must be met: the system must exhibit a reasonable performance running on a low power consumption mobile GPU computing platform (NVIDIA Jetson TK1) so that it can be integrated in mobile robotics systems, ambient intelligence or ambient assisted living applications. The acquisition system is based on the use of color and depth (RGB-D) data streams provided by low-cost 3D sensors like Microsoft Kinect or PrimeSense Carmine. The range of algorithms and applications to be implemented and integrated will be quite broad, ranging from the acquisition, outlier removal or filtering of the input data and the segmentation or characterization of regions of interest in the scene to the very object recognition and pose estimation. Furthermore, in order to validate the proposed system, we will create a 3D object dataset. It will be composed by a set of 3D models, reconstructed from common household objects, as well as a handful of test scenes in which those objects appear. The scenes will be characterized by different levels of occlusion, diverse distances from the elements to the sensor and variations on the pose of the target objects. The creation of this dataset implies the additional development of 3D data acquisition and 3D object reconstruction applications. The resulting system has many possible applications, ranging from mobile robot navigation and semantic scene labeling to human-computer interaction (HCI) systems based on visual information.
Resumo:
Negli ultimi decenni, le tecnologie e i prodotti informatici sono diventati pervasivi e sono ora una parte essenziale delle nostre vite. Ogni giorno ci influenzano in maniera più o meno esplicita, cambiando il nostro modo di vivere e i nostri comportamenti più o meno intenzionalmente. Tuttavia, i computer non nacquero inizialmente per persuadere: essi furono costruiti per gestire, calcolare, immagazzinare e recuperare dati. Non appena i computer si sono spostati dai laboratori di ricerca alla vita di tutti i giorni, sono però diventati sempre più persuasivi. Questa area di ricerca è chiamata pesuasive technology o captology, anche definita come lo studio dei sistemi informatici interattivi progettati per cambiare le attitudini e le abitudini delle persone. Nonostante il successo crescente delle tecnologie persuasive, sembra esserci una mancanza di framework sia teorici che pratici, che possano aiutare gli sviluppatori di applicazioni mobili a costruire applicazioni in grado di persuadere effettivamente gli utenti finali. Tuttavia, il lavoro condotto dal Professor Helal e dal Professor Lee al Persuasive Laboratory all’interno dell’University of Florida tenta di colmare questa lacuna. Infatti, hanno proposto un modello di persuasione semplice ma efficace, il quale può essere usato in maniera intuitiva da ingegneri o specialisti informatici. Inoltre, il Professor Helal e il Professor Lee hanno anche sviluppato Cicero, un middleware per dispositivi Android basato sul loro precedente modello, il quale può essere usato in modo molto semplice e veloce dagli sviluppatori per creare applicazioni persuasive. Il mio lavoro al centro di questa tesi progettuale si concentra sull’analisi del middleware appena descritto e, successivamente, sui miglioramenti e ampliamenti portati ad esso. I più importanti sono una nuova architettura di sensing, una nuova struttura basata sul cloud e un nuovo protocollo che permette di creare applicazioni specifiche per smartwatch.
Resumo:
Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.
Resumo:
Mode of access: Internet.
Resumo:
"October 1979."
Resumo:
This paper presents a formal framework for modelling and analysing mobile systems. The framework comprises a collection of models of the dominant design paradigms which are readily extended to incorporate details of particular technologies, i.e., programming languages and their run-time support, and applications. The modelling language is Object-Z, an extension of the well-known Z specification language with explicit support for object-oriented concepts. Its support for object orientation makes Object-Z particularly suited to our task. The system structuring techniques offered by object-orientation are well suited to modelling mobile systems. In addition, inheritance and polymorphism allow us to exploit commonalities in mobile systems by defining more complex models in terms of simpler ones.
Resumo:
Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly
Resumo:
This paper proposes an architecture for pervasive computing which utilizes context information to provide adaptations based on vertical handovers (handovers between heterogeneous networks) while supporting application Quality of Service (QoS). The future of mobile computing will see an increase in ubiquitous network connectivity which allows users to roam freely between heterogeneous networks. One of the requirements for pervasive computing is to adapt computing applications or their environment if current applications can no longer be provided with the requested QoS. One of possible adaptations is a vertical handover to a different network. Vertical handover operations include changing network interfaces on a single device or changes between different devices. Such handovers should be performed with minimal user distraction and minimal violation of communication QoS for user applications. The solution utilises context information regarding user devices, user location, application requirements, and network environment. The paper shows how vertical handover adaptations are incorporated into the whole infrastructure of a pervasive system