948 resultados para Mine ventilation.
Resumo:
Mining and processing of metal ores are important causes of soil and groundwater contamination in many regions worldwide. Metal contaminations are a serious risk for the environment and human health. The assessment of metal contaminations in the soil is therefore an important task. A common approach to assess the environmental risk emanating from inorganic contaminations to soil and groundwater is the use of batch or column leaching tests. In this regard, the suitability of leaching tests is a controversial issue. In the first part of this work the applicability and comparability of common leaching tests in the scope of groundwater risk assessment of inorganic contamination is reviewed and critically discussed. Soil water sampling methods (the suction cup method and centrifugation) are addressed as an alternative to leaching tests. Reasons for limitations of the comparability of leaching test results are exposed and recommendations are given for the expedient application of leaching tests for groundwater risk assessment. Leaching tests are usually carried out in open contact with the atmosphere disregarding possible changes of redox conditions. This can affect the original metal speciation and distribution, particularly when anoxic samples are investigated. The influence of sample storage on leaching test results of sulfide bearing anoxic material from a former flotation dump is investigated in a long-term study. Since the oxidation of the sulfide-bearing samples leads to a significant overestimation of metal release, a feasible modification for the conduction of common leaching tests for anoxic material is proposed, where oxidation is prevented efficiently. A comparison of leaching test results to soil water analyzes have shown that the modified saturation soil extraction (SSE) is found to be the only of the tested leaching procedures, which can be recommended for the assessment of current soil water concentrations at anoxic sites if direct investigation of the soil water is impossible due to technical reasons. The vertical distribution and speciation of Zn and Pb in the flotation residues as well as metal concentrations in soil water and plants were investigated to evaluate the environmental risk arising from this site due to the release of metals. The variations in pH and inorganic C content show an acidification of the topsoil with pH values down to 5.5 in the soil and a soil water pH of 6 in 1 m depth. This is due to the oxidation of sulfides and depletion in carbonates. In the anoxic subsoil pH conditions are still neutral and soil water collected with suction cups is in equilibrium with carbonate minerals. Results from extended x-ray absorption fine-structure (EXAFS) spectroscopy confirm that Zn is mainly bound in sphalerite in the subsoil and weathering reactions lead to a redistribution of Zn in the topsoil. A loss of 35% Zn and S from the topsoil compared to the parent material with 10 g/kg Zn has been observed. 13% of total Zn in the topsoil can be regarded as mobile or easily mobilizable according to sequential chemical extractions (SCE). Zn concentrations of 10 mg/L were found in the soil water, where pH is acidic. Electron supply and the buffer capacity of the soil were identified as main factors controlling Zn mobility and release to the groundwater. Variable Pb concentrations up to 30 µg/L were observed in the soil water. In contrast to Zn, Pb is enriched in the mobile fraction of the oxidized topsoil by a factor of 2 compared to the subsoil with 2 g/kg Pb. 80% of the cation exchange capacity in the topsoil is occupied by Pb. Therefore, plant uptake and bioavailability are of major concern. If the site is not prevented from proceeding acidification in the future, a significant release of Zn, S, and Pb to the groundwater has to be expected. Results from this study show that the assessment of metal release especially from sulfide bearing anoxic material requires an extensive comprehension of leaching mechanisms on the one hand and on weathering processes, which influence the speciation and the mobility of metals, on the other hand. Processes, which may change redox and pH conditions in the future, have to be addressed to enable sound decisions for soil and groundwater protection and remediation.
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
BACKGROUND: Functional magnetic resonance imaging (fMRI) of fluorine-19 allows for the mapping of oxygen partial pressure within perfluorocarbons in the alveolar space (Pao(2)). Theoretically, fMRI-detected Pao(2) can be combined with the Fick principle approach, i.e., a mass balance of oxygen uptake by ventilation and delivery by perfusion, to quantify the ventilation-perfusion ratio (Va/Q) of a lung region: The mixed venous blood and the inspiratory oxygen fraction, which are equal for all lung regions, are measured. In addition, the local expiratory oxygen fraction and the end capillary oxygen content, both of which may differ between the lung regions, are calculated using the fMRI-detected Pao(2). We investigated this approach by numerical simulations and applied it to quantify local Va/Q in the perfluorocarbons during partial liquid ventilation. METHODS: Numerical simulations were performed to analyze the sensitivity of the Va/Q calculation and to compare this approach with another one proposed by Rizi et al. in 2004 (Magn Reson Med 2004;52:65-72). Experimentally, the method was used during partial liquid ventilation in 7 anesthetized pigs. The Pao(2) distribution in intraalveolar perflubron was measured by fluorine-19 MRI. Respiratory gas fractions together with arterial and mixed venous blood samples were taken to quantify oxygen partial pressure and content. Using the Fick principle, the local Va/Q was estimated. The impact of gravity (nondependent versus dependent) of perflubron dose (10 vs 20 mL/kg body weight) and of inspired oxygen fraction (Fio(2)) (0.4-1.0) on Va/Q was examined. RESULTS: In numerical simulations, the Fick principle proved to be appropriate over the Va/Q range from 0.02 to 2.5. Va/Q values were in acceptable agreement with the method published by Rizi et al. In the experimental setting, low mean Va/Q values were found in perflubron (confidence interval [CI] 0.08-0.29 with 20 mL/kg perflubron). At this dose, Va/Q in the nondependent lung was higher (CI 0.18-0.39) than in the dependent lung regions (CI 0.06-0.16; P = 0.006; Student t test). Differences depending on Fio(2) or perflubron dose were, however, small. CONCLUSION: The results show that derivation of Va/Q from local Po(2) measurements using fMRI in perflubron is feasible. The low detected Va/Q suggests that oxygen transport into the perflubron-filled alveolar space is significantly restrained.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
PURPOSE OF REVIEW: Mechanical ventilation is a cornerstone of ICU treatment. Because of its interaction with blood flow and intra-abdominal pressure, mechanical ventilation has the potential to alter hepato-splanchnic perfusion, abdominal organ function and thereby outcome of the most critically ill patients. RECENT FINDINGS: Mechanical ventilation can alter hepato-splanchnic perfusion, but the effects are minimal (with moderate inspiratory pressures, tidal volumes, and positive end-expiratory pressure levels) or variable (with high ones). Routine nursing procedures may cause repeated episodes of inadequate hepato-splanchnic perfusion in critically ill patients, but an association between perfusion and multiple organ dysfunction cannot yet be determined. Clinical research continues to be challenging as a result of difficulties in measuring hepato-splanchnic blood flow at the bedside. SUMMARY: Mechanical ventilation and attempts to improve oxygenation such as intratracheal suctioning and recruitment maneuvers, may have harmful consequences in patients with already limited cardiovascular reserves or deteriorated intestinal perfusion. Due to difficulties in assessing hepato-splanchnic perfusion, such effects are often not detected.
Resumo:
Although postmortem imaging has gained prominence in the field of forensic medicine, evaluation of the postmortem lung remains problematic. Specifically, differentiation of normal postmortem changes and pathological pulmonary changes is challenging and at times impossible. In this study, five corpses were ventilated using a mechanical ventilator with a pressure of 40 mbar (40.8 cm H(2)O). The ventilation was performed via an endotracheal tube, a larynx mask or a continuous positive airway pressure mask. Postmortem computed tomographic images of the lungs before and with a ventilation of 40 mbar (40.8 cm H(2)O) were evaluated and the lung volumes were measured with segmentation software. Postmortem ventilation led to a clearly visible decrease of both the density in the dependant parts of the lungs and ground glass attenuation, whereas consolidated areas remained unchanged. Furthermore, a mean increase in the lung volume of 2.10 l was seen. Pathological changes such as septal thickening or pulmonary nodules in the lung parenchyma became more detectable with postmortem ventilation. Intracorporal postmortem mechanical ventilation of the lungs appears to be an effective method for enhancing detection of small pathologies of the lung parenchyma as well as for discriminating between consolidation, ground glass attenuation and position-dependent density.
Resumo:
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global three-dimensional ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during the early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.
Abandoned Coal Mine Drainage and Its Remediation: Impacts on Stream Ecosystem Structure and Function
Resumo:
The effects of abandoned mine drainage (AMD) on streams and responses to remediation efforts were studied using three streams (AMD-impacted, remediated, reference) in both the anthracite and the bituminous coal mining regions of Pennsylvania (USA). Response variables included ecosystem function as well as water chemistry and macroinvertebrate community composition. The bituminous AMD stream was extremely acidic with high dissolved metals concentrations, a prolific mid-summer growth of the filamentous alga, Mougeotia, and .10-fold more chlorophyll than the reference stream. The anthracite AMD stream had a higher pH, substrata coated with iron hydroxide(s), and negligible chlorophyll. Macroinvertebrate communities in the AMD streams were different from the reference streams, the remediated streams, and each other. Relative to the reference stream, the AMD stream(s) had (1) greater gross primary productivity (GPP) in the bituminous region and undetectable GPP in the anthracite region, (2) greater ecosystem respiration in both regions, (3) greatly reduced ammonium uptake and nitrification in both regions, (4) lower nitrate uptake in the bituminous (but not the anthracite) region, (5) more rapid phosphorus removal from the water column in both regions, (6) activities of phosphorus-acquiring, nitrogenacquiring, and hydrolytic-carbon-acquiring enzymes that indicated extreme phosphorus limitation in both regions, and (7) slower oak and maple leaf decomposition in the bituminous region and slower oak decomposition in the anthracite region. Remediation brought chlorophyll concentrations and GPP nearer to values for respective reference streams, depressed ecosystem respiration, restored ammonium uptake, and partially restored nitrification in the bituminous (but not the anthracite) region, reduced nitrate uptake to an undetectable level, restored phosphorus uptake to near normal rates, and brought enzyme activities more in line with the reference stream in the bituminous (but not the anthracite) region. Denitrification was not detected in any stream. Water chemistry and macroinvertebrate community structure analyses capture the impact of AMD at the local reach scale, but functional measures revealed that AMD has ramifications that can cascade to downstream reaches and perhaps to receiving estuaries.
Resumo:
Long-term sedation with midazolam or propofol in intensive care units (ICUs) has serious adverse effects. Dexmedetomidine, an α(2)-agonist available for ICU sedation, may reduce the duration of mechanical ventilation and enhance patient comfort.
Resumo:
The real utilisation scenario of non-invasive ventilation (NIV) in Swiss ICUs has never been reported. Using a survey methodology, we developed a questionnaire sent to the directors of the 79 adult ICUs to identify the perceived pattern of NIV utilisation. We obtained a response rate of 62%. The overall utilisation rate for NIV was 26% of all mechanical ventilations, but we found significant differences in the utilisation rates among different linguistic areas, ranging from 20% in the German part to 48% in the French part (p <0.01). NIV was mainly indicated for the acute exacerbations of COPD (AeCOPD), acute cardiogenic pulmonary edema (ACPE) and acute respiratory failure (ARF) in selected do-not-intubate patients. In ACPE, CPAP was much less used than bi-level ventilation and was still applied in AeCOPD. The first line interface was a facial mask (81%) and the preferred type of ventilator was an ICU machine with an NIV module (69%). The perceived use of NIV is generally high in Switzerland, but regional variations are remarkable. The indications of NIV use are in accordance with international guidelines. A high percentage of units consider selected do-not-intubate conditions as an important additional indication.
Resumo:
Postmortem imaging has gained prominence in the field of forensic pathology. Even with experience in this procedure, difficulties arise in evaluating pathologies of the postmortem lung. The effect of postmortem ventilation with applied pressures of 10, 20, 30 and 40mbar was evaluated in 10 corpses using simultaneous postmortem computed tomography (pmCT) scans. Ventilation was performed via a continuous positive airway pressure mask (n=5), an endotracheal tube (n=4) and a laryngeal mask (n=1) using a portable home care ventilator. The lung volumes were measured and evaluated by a segmentation technique based on reconstructed CT data. The resulting changes to the lungs were analyzed. Postmortem ventilation at 40mbar induced a significant (p<0.05) unfolding of the lungs, with a mean volume increase of 1.32l. Small pathologies of the lung such as scarring and pulmonary nodules as well as emphysema were revealed, while inner livores were reduced. Even though lower ventilation pressures resulted in a significant (p<0.05) volume increase, pathologies were best evaluated when a pressure of 40mbar was applied, due to the greater reduction of the inner livores. With the ventilation-induced expansion of the lungs, a decrease in the heart diameter and gaseous distension of the stomach was recognized. In conclusion, postmortem ventilation is a feasible method for improving evaluation of the lungs and detection of small lung pathologies. This is because of the volume increase in the air-filled portions of the lung and reduced appearance of inner livores.
Resumo:
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study therefore aims to extend a previously reported frequency filtering technique to a spontaneously breathing cohort and assess the regional distributions of ventilation and perfusion and their relationship. Methods Ten healthy adults were measured during a breath hold and while spontaneously breathing in supine, prone, left and right lateral positions. EIT data were analysed with and without filtering at the respiratory and heart rate. Profiles of ventilation, perfusion and ventilation/perfusion related impedance change were generated and regions of ventilation and pulmonary perfusion were identified and compared. Results Analysis of the filtration technique demonstrated its ability to separate the ventilation and cardiac related impedance signals without negative impact. It was, therefore, deemed suitable for use in this spontaneously breathing cohort. Regional distributions of ventilation, perfusion and the combined ΔZV/ΔZQ were calculated along the gravity axis and anatomically in each position. Along the gravity axis, gravity dependence was seen only in the lateral positions in ventilation distribution, with the dependent lung being better ventilated regardless of position. This gravity dependence was not seen in perfusion. When looking anatomically, differences were only apparent in the lateral positions. The lateral position ventilation distributions showed a difference in the left lung, with the right lung maintaining a similar distribution in both lateral positions. This is likely caused by more pronounced anatomical changes in the left lung when changing positions. Conclusions The modified filtration technique was demonstrated to be effective in separating the ventilation and perfusion signals in spontaneously breathing subjects. Gravity dependence was seen only in ventilation distribution in the left lung in lateral positions, suggesting gravity based shifts in anatomical structures. Gravity dependence was not seen in any perfusion distributions.
Resumo:
The link between the atmospheric CO2 level and the ventilation state of the deep ocean is an important building block of the key hypotheses put forth to explain glacial-interglacial CO2 fluctuations. In this study, we systematically examine the sensitivity of atmospheric CO2 and its carbon isotope composition to changes in deep ocean ventilation, the ocean carbon pumps, and sediment formation in a global 3-D ocean-sediment carbon cycle model. Our results provide support for the hypothesis that a break up of Southern Ocean stratification and invigorated deep ocean ventilation were the dominant drivers for the early deglacial CO2 rise of ~35 ppm between the Last Glacial Maximum and 14.6 ka BP. Another rise of 10 ppm until the end of the Holocene is attributed to carbonate compensation responding to the early deglacial change in ocean circulation. Our reasoning is based on a multi-proxy analysis which indicates that an acceleration of deep ocean ventilation during early deglaciation is not only consistent with recorded atmospheric CO2 but also with the reconstructed opal sedimentation peak in the Southern Ocean at around 16 ka BP, the record of atmospheric δ13CCO2, and the reconstructed changes in the Pacific CaCO3 saturation horizon.