911 resultados para Metal cutting process
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45 degrees C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45 degrees C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)
Resumo:
The nickel superalloys are known as being a material with poor machinability, they have some properties like high hardness, good resistance at high temperature, tendency to weld with the tool material at high temperature, etc. In the aerospace, biomedical and petrochemical industry, are increasing the need to use materials that resist to aggressive process and environment. In these uses, it has increased the use of nickel-based superalloys like Inconel 718 and consequently the need to research new techniques and tools to improve the machinability of this material. For the superalloys and resistant alloys at high temperatures is considered that the difficulty in the machining regards to the combination of the relatively high cutting forces and high temperatures that grow during the machine process, causing deformation or breakage of the cutting tool. This work purpose is to develop the study of the machining of external cylindrical turning of the nickel based alloy Inconel 718, using ceramic tools, seeking the optimization of machining this alloy, looking to provide real productive increases without the need of investments in new production means. The machining test were accomplished using commercials hard metal tools and the results were compared each other to find the best tool and the best parameter. The conclusion is that the tool TNMG160408-23 -class 1005- was the better one, when used with the parameter 60_15_08
Resumo:
One of the ways to minimize the effects of unproductive time caused by tool wear can be achieved by introducing an efficient system of lubrication and cooling in the process. However, in the last decade the research had the goal to restrict the maximum use of refrigerants and / or lubricants in metal-mechanical production. The important factors that justify this procedure include the operational costs of production, ecological issues, and the legal requirements of environmental conservation and preservation of human health. The purpose of the proposed work is the study of machining by turning with the focus on the influence caused by the application of cutting fluid in several ways of application (abundant and MQF) and also by comparing the results obtained by machining without the presence of fluid . For this purpose, the turning tests are conducted using an aluminum alloy (AA 7075). The response variables to be analyzed were obtained from the roughness (Ra and Ry), the stresses presented (VB) and their progression in relation to the cutting length achieved, the type of chip formed, in addition to changes in the degree of finish (roughness) presented by the turned parts. The results of this study should provide more detailed information about the actual influence of cutting fluids in turning this alloy, which are characterized by high rates of deformation when the formation of damaging your chip machining and also the quality of surface generated. Therefore, it is expected to provide subsidies to promote the optimization of machining this alloy making the most of the role of cutting fluid
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
In contemporary industrial, welding processes are widely used, this is the most important process of joining metals used industrially. The welding can be used to build simple structures, like doors and gates for instance, in the same way can be used in situations of high responsibility, such as the nuclear industry and oil industry. Dissimilar welding is a case of welded joints, is characterized by the junction between different materials, for this case, stainless steel and carbon steel that are widely used in steam lines, power plants, nuclear reactors, petrochemical plants. Because their different mechanical and corrosive properties, the join, stainless steel with carbon steel, not only meets environmental requirements and also reduces cost. By using penetrating liquid tests, macrograph, hardness and tensile test was compared the possibility of replacing the current use of 309 rods as filler metal in dissimilar welding between carbon steel and stainless steel by add-on material carbon steel essentially, in this case E7018 coated electrode was used, but without the coating. After analysis of the results and for comparison, was proposed with some certainty that it is possible to replace the addition of materials, thus leading economy in this process widely used in the modern industry
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ceramic parts are increasingly replacing metal parts due to their excellent physical, chemical and mechanical properties, however they also make them difficult to manufacture by traditional machining methods. The developments carried out in this work are used to estimate tool wear during the grinding of advanced ceramics. The learning process was fed with data collected from a surface grinding machine with tangential diamond wheel and alumina ceramic test specimens, in three cutting configurations: with depths of cut of 120 mu m, 70 mu m and 20 mu m. The grinding wheel speed was 35m/s and the table speed 2.3m/s. Four neural models were evaluated, namely: Multilayer Perceptron, Radial Basis Function, Generalized Regression Neural Networks and the Adaptive Neuro-Fuzzy Inference System. The models'performance evaluation routines were executed automatically, testing all the possible combinations of inputs, number of neurons, number of layers, and spreading. The computational results reveal that the neural models were highly successful in estimating tool wear, since the errors were lower than 4%.
Resumo:
The rapid synthesis of Mn3O4 powders by a two-step process of pyro-synthesis of ethylene glycol-metal nitrate precursor assisted by nitric acid is reported. A new strategy that accelerates the synthesis and allows obtaining highly pure crystalline Mn3O4 is discussed. The structural and morphological characteristics of the Mn3O4 powders are presented and discussed. The mechanism of formation of the Mn3O4 is also discussed. In comparison with other synthesis methods, the present method shows that the proposed route of synthesis has the main advantage of high production of the powder material in a very short time.
Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces
Resumo:
Using oxygen instead of air in a burning process is at present being widely discussed as an option to reduce CO2 emissions. One of the possibilities is to maintain the combustion reaction at the same energy release level as burning with air, which reduces fuel consumption and the emission rates of CO2. A thermal simulation was made for metal reheating furnaces, which operate at a temperature in the range of 1150-1250 degrees C, using natural gas with a 5% excess of oxygen, maintaining fixed values for pressure and combustion temperature. The theoretical results show that it is possible to reduce the consumption of fuel, and this reduction depends on the amount of heat that can be recovered during the air pre-heating process. The analysis was further conducted by considering the 2012 costs of natural gas and oxygen in Brazil. The use of oxygen showed to be economically viable for large furnaces that operate with conventional heat recovering systems (those that provide pre-heated air at temperatures near 400 degrees C). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG