959 resultados para Membrane Lipid Dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo, daunomycin also decreased the levels of membrane-associated G proteins and protein kinase C-alpha beta in the heart. The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation. These results reveal an important role of the lipid component of the cell membrane in signal transduction and its alteration by anthracyclines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using tobacco plants that had been transformed with the cDNA for glycerol-3-phosphate acyltransferase, we have demonstrated that chilling tolerance is affected by the levels of unsaturated membrane lipids. In the present study, we examined the effects of the transformation of tobacco plants with cDNA for glycerol-3-phosphate acyltransferase from squash on the unsaturation of fatty acids in thylakoid membrane lipids and the response of photosynthesis to various temperatures. Of the four major lipid classes isolated from the thylakoid membranes, phosphatidylglycerol showed the most conspicuous decrease in the level of unsaturation in the transformed plants. The isolated thylakoid membranes from wild-type and transgenic plants did not significantly differ from each other in terms of the sensitivity of photosystem II to high and low temperatures and also to photoinhibition. However, leaves of the transformed plants were more sensitive to photoinhibition than those of wild-type plants. Moreover, the recovery of photosynthesis from photoinhibition in leaves of wild-type plants was faster than that in leaves of the transgenic tobacco plants. These results suggest that unsaturation of fatty acids of phosphatidylglycerol in thylakoid membranes stabilizes the photosynthetic machinery against low-temperature photoinhibition by accelerating the recovery of the photosystem II protein complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlamydia trachomatis undergoes its entire life cycle within an uncharacterized intracellular vesicle that does not fuse with lysosomes. We used a fluorescent Golgi-specific probe, (N-[7-(4-nitrobenzo-2-oxa-1,3-diazole)]) aminocaproylsphingosine (C6-NBD-Cer), in conjunction with conventional fluorescence or confocal microscopy to identify interactions between the Golgi apparatus and the chlamydial inclusion. We observed not only a close physical association between the Golgi apparatus and the chlamydial inclusion but the eventual presence of a metabolite of this fluorescent probe associated with the chlamydiae themselves. Sphingomyelin, endogenously synthesized from C6-NBD-Cer, was specifically transported to the inclusion and incorporated into the cell wall of the intracellular chlamydiae. Incorporation of the fluorescent sphingolipid by chlamydiae was inhibited by brefeldin A. Chlamydiae therefore occupy a vesicle distal to the Golgi apparatus that receives anterograde vesicular traffic from the Golgi normally bound for the plasma membrane. Collectively, the data suggest that the chlamydial inclusion may represent a unique compartment within the trans-Golgi network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diferentes abordagens teóricas têm sido utilizadas em estudos de sistemas biomoleculares com o objetivo de contribuir com o tratamento de diversas doenças. Para a dor neuropática, por exemplo, o estudo de compostos que interagem com o receptor sigma-1 (Sig-1R) pode elucidar os principais fatores associados à atividade biológica dos mesmos. Nesse propósito, estudos de Relações Quantitativas Estrutura-Atividade (QSAR) utilizando os métodos de regressão por Mínimos Quadrados Parciais (PLS) e Rede Neural Artificial (ANN) foram aplicados a 64 antagonistas do Sig-1R pertencentes à classe de 1-arilpirazóis. Modelos PLS e ANN foram utilizados com o objetivo de descrever comportamentos lineares e não lineares, respectivamente, entre um conjunto de descritores e a atividade biológica dos compostos selecionados. O modelo PLS foi obtido com 51 compostos no conjunto treinamento e 13 compostos no conjunto teste (r² = 0,768, q² = 0,684 e r²teste = 0,785). Testes de leave-N-out, randomização da atividade biológica e detecção de outliers confirmaram a robustez e estabilidade dos modelos e mostraram que os mesmos não foram obtidos por correlações ao acaso. Modelos também foram gerados a partir da Rede Neural Artificial Perceptron de Multicamadas (MLP-ANN), sendo que a arquitetura 6-12-1, treinada com as funções de transferência tansig-tansig, apresentou a melhor resposta para a predição da atividade biológica dos compostos (r²treinamento = 0,891, r²validação = 0,852 e r²teste = 0,793). Outra abordagem foi utilizada para simular o ambiente de membranas sinápticas utilizando bicamadas lipídicas compostas por POPC, DOPE, POPS e colesterol. Os estudos de dinâmica molecular desenvolvidos mostraram que altas concentrações de colesterol induzem redução da área por lipídeo e difusão lateral e aumento na espessura da membrana e nos valores de parâmetro de ordem causados pelo ordenamento das cadeias acil dos fosfolipídeos. As bicamadas lipídicas obtidas podem ser usadas para simular interações entre lipídeos e pequenas moléculas ou proteínas contribuindo para as pesquisas associadas a doenças como Alzheimer e Parkinson. As abordagens usadas nessa tese são essenciais para o desenvolvimento de novas pesquisas em Química Medicinal Computacional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca2+ increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca2+ in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhomboid intramembrane proteases are the enzymes that release active epidermal growth factor receptor (EGFR) ligands in Drosophila and C. elegans, but little is known about their functions in mammals. Here we show that the mammalian rhomboid protease RHBDL4 (also known as Rhbdd1) promotes trafficking of several membrane proteins, including the EGFR ligand TGFα, from the endoplasmic reticulum (ER) to the Golgi apparatus, thereby triggering their secretion by extracellular microvesicles. Our data also demonstrate that RHBDL4-dependent trafficking control is regulated by G-protein coupled receptors, suggesting a role for this rhomboid protease in pathological conditions, including EGFR signaling. We propose that RHBDL4 reorganizes trafficking events within the early secretory pathway in response to GPCR signaling. Our work identifies RHBDL4 as a rheostat that tunes secretion dynamics and abundance of specific membrane protein cargoes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nerve sprouts emerge from motor nerve terminals following blockade of exo-endocytosis for more than 3 days by botulinum neurotoxin (BoNT), and form functional synapses, albeit temporary. Upon restoration of synaptic activity to the parent terminal 7 and 90 days after exposure to BoNT/F or A respectively, a concomitant retraction of the outgrowths was observed. BoNT/E caused short-term neuroparalysis, and dramatically accelerated the recovery of BoNT/A-paralyzed muscle by further truncation of SNAP-25 and its replenishment with functional full-length SNARE. The removal of 9 C-terminal residues from SNAP-25 by BoNT/A leads to persistence of the inhibitory product due to the formation of a nonproductive SNARE complex(es) at release sites, whereas deletion of a further 17 amino acids permits replenishment and a speedy recovery. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review discusses various issues regarding vaccines:what are they and how they work, safety aspects, the role of adjuvants and carriers in vaccination, synthetic peptides as immunogens, and new technologies for vaccine development and delivery including the identification of novel adjuvants for mucosal vaccine delivery. There has been a recent increase of interest, in the use of lipids and carbohydrates as adjuvants, and so a particular emphasis is placed on adjuvants derived from lipids or carbohydrates, or from both. Copyright (C) 2003 European Peptide Society and John Wiley Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of a mammalian cyclic antimicrobial peptide, rhesus theta defensin 1 (RTD-1) and its open chain analogue (oRTD-1), on the phase behaviour and structure of model membrane systems (dipalmitoyl phosphatidylcholine, DPPC and dipalmitoyl phosphatidylglycerol, DPPG) were studied. The increased selectivity of RTD-1 for anionic DPPG over zwitterionic DPPC was shown by differential scanning calorimetry. RTD-1, at a molar peptide-lipid ratio of 1:100, induced considerable changes in the phase behaviour of DPPG, but not of DPPC. The main transition temperature, T-m, Was unchanged, but additional phase transitions appeared above T-m. oRTD-1 induced similar effects. However, the effects were not observable below a peptide:lipid molar ratio of 1:50, which correlates with the weaker biological activity of oRTD-1. Small-and wide-angle X-ray scattering revealed for DPPG the appearance of additional structural features induced by RTP-1 above T-m, which were interpreted as correlated lamellar structures, with increased order of the fatty acyl side chains of the lipid. It is proposed that after initial electrostatic interaction of the cationic rim of the peptide with the anionic DPPG headgroups, leading to stabilized lipid-peptide clusters, the hydrophobic face of the peptide assists in its interaction with the fatty acyl side chains eventually leading to membrane disruption. (C) 2004 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protective antigen (PA) of anthrax toxin binds to a cell surface receptor, undergoes heptamerization, and binds the enzymatic subunits, the lethal factor (LF) and the edema factor (EF). The resulting complex is then endocytosed. Via mechanisms that depend on the vacuolar ATPase and require membrane insertion of PA, LF and EF are ultimately delivered to the cytoplasm where their targets reside. Here, we show that membrane insertion of PA already occurs in early endosomes, possibly only in the multivesicular regions, but that subsequent delivery of LF to the cytoplasm occurs preferentially later in the endocytic pathway and relies on the dynamics of internal vesicles of multivesicular late endosomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The oligomeric lipid raft-associated integral protein stomatin normally localizes to the plasma membrane and the late endosomal compartment. Similar to the caveolins, it is targeted to lipid bodies (LBs) on overexpression. Endogenous stomatin also associates with LBs to a small extent. Green fluorescent protein-tagged stomatin (StomGFP) and the dominant-negative caveolin-3 mutant DGV(cav3)(HA) occupy distinct domains on LB surfaces but eventually intermix. Studies of StomGFP deletion mutants reveal that the region for membrane association but not oligomerization and raft association is essential for LB targeting. Blocking protein synthesis leads to the redistribution of StomGFP from LBs to LysoTracker-positive vesicles indicating a connection with the late endosomal/ lysosomal pathway. Live microscopy of StomGFP reveals multiple interactions between LBs and microtubule-associated vesicles possibly representing signaling events and/or the exchange of cargo. Proteomic analysis of isolated LBs identifies adipophilin and TIP47, various lipid-specific enzymes, cytoskeletal components, chaperones, Ras-related proteins, protein kinase D2, and other regulatory proteins. The association of the Rab proteins 1, 6, 7, 10, and 18 with LBs indicates various connections to other compartments. Our data suggest that LBs are not only involved in the storage of lipids but also participate actively in the cellular signaling network and the homeostasis of lipids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximate to 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximate to 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.