849 resultados para Measuring and Performance System
Resumo:
An academic–industrial partnership was formed with the aim of constructing a natural stone database for Northern Ireland that could be used by the public and practitioners to understand both the characteristics of the stone used in construction across Northern Ireland and how it has performed in use, and, through a linked database of historical quarries, explore the potential for obtaining locally sourced replacement stone. The aims were to improve the level of conservation specification by those with a duty of care for historical structures, and to enhance the quality of the conservation work undertaken by archi- tects and contractors through their improved knowledge of stone and stone decay processes.
Resumo:
Electrokinetic process is a potential in situ soil remediation process which transports the contaminants via electromigration and electroosmosis. For organic compounds contaminated soil, Fenton’s reagent is utilized as a flushing agent in electrokinetic process (Electrokinetic-Fenton) so that removal of organic contaminants could be achieved by in situ oxidation/destruction. However, this process is not applied widely in industries as the stability issue for Fenton’s reagent is the main drawback. The aim of this mini review is to summarize the developments of Electrokinetic-Fenton process on enhancing the stability of Fenton’s reagent and process efficiency in past decades. Generally, the enhancements are conducted via four paths: (1) chemical stabilization to delay H2O2 decomposition, (2) increase of oxidant availability by monitoring injection method for Fenton’s reagent, (3) electrodes operation and iron catalysts and (4) operating conditions such as voltage gradient, electrolytes and H2O2 concentration. In addition, the types of soils and contaminants are also showing significant effect as the soil with low acid buffering capacity, adequate iron concentration, low organic matter content and low aromatic ring organic contaminants generally gives better efficiency.
Resumo:
The mapping problem is inherent to digital musical instruments (DMIs), which require, at the very least, an association between physical gestures and digital synthesis algorithms to transform human bodily performance into sound. This article considers the DMI mapping problem in the context of the creation and performance of a heterogeneous computer chamber music piece, a trio for violin, biosensors, and computer. Our discussion situates the DMI mapping problem within the broader set of interdependent musical interaction issues that surfaced during the composition and rehearsal of the trio. Through descriptions of the development of the piece, development of the hardware and software interfaces, lessons learned through rehearsal, and self-reporting by the participants, the rich musical possibilities and technical challenges of the integration of digital musical instruments into computer chamber music are demonstrated.
Resumo:
Two important strands of research within the literature on Environmental Operations Management (EOM) relate to environmental approach and performance. Often in this research the links between environmental approach, environmental performance and EOM are considered separately with little consideration given to the interrelationships between them. This study develops and tests a theoretical framework that combines these two strands to explore how UK food manufacturers approach EOM. The framework considers the relationships between an environmentally pro-active strategic orientation, EOM and environmental and cost performance. A cross-sectional survey was developed to collect data from a sample of 1200 food manufacturing firms located within the UK. Responses were sought from production and operations managers who are knowledgeable about the environmental operations practices within their firms. A total of 149 complete and useable responses were obtained. The reliability and validity of the scales used in the survey were tested using exploratory factor analysis, prior to the testing of the hypotheses underpinning the theoretical framework using hierarchical regression analysis. Our results generate support for a link between environmental proactivity, environmental practices and performance, consistent with the natural resource-based view (NRBV) and a number of studies in the extant literature. In considering environmental proactivity as a standalone concept that influences the implementation of environmental practices outlined in the NRBV, our study generates some novel insights into these links. Further our results provide some interesting insights for managers within the food industry who can identify the potential benefits of certain practices for performance within this unique context.
Resumo:
The injection stretch blow moulding process involves the inflation and stretching of a hot preform into a mould to form bottles. A critical process variable and an essential input for process simulations is the rate of pressure increase within the preform during forming, which is regulated by an air flow restrictor valve. The paper describes a set of experiments for measuring the air flow rate within an industrial ISBM machine and the subsequent modelling of it with the FEA package ABAQUS. Two rigid containers were inserted into a Sidel SBO1 blow moulding machine and subjected to different supply pressures and air flow restrictor settings. The pressure and air temperature were recorded for each experiment enabling the mass flow rate of air to be determined along with an important machine characteristic known as the ‘dead volume’. The experimental setup was simulated within the commercial FEA package ABAQUS/Explicit using a combination of structural, fluid and fluid link elements that idealize the air flowing through an orifice behaving as an ideal gas under isothermal conditions. Results between experiment and simulation are compared and show a good correlation.
Resumo:
Several studies in the last decade have pointed out that many devices, such as computers, are often left powered on even when idle, just to make them available and reachable on the network, leading to large energy waste. The concept of network connectivity proxy (NCP) has been proposed as an effective means to improve energy efficiency. It impersonates the presence of networked devices that are temporally unavailable, by carrying out background networking routines on their behalf. Hence, idle devices could be put into low-power states and save energy. Several architectural alternatives and the applicability of this concept to different protocols and applications have been investigated. However, there is no clear understanding of the limitations and issues of this approach in current networking scenarios. This paper extends the knowledge about the NCP by defining an extended set of tasks that the NCP can carry out, by introducing a suitable communication interface to control NCP operation, and by designing, implementing, and evaluating a functional prototype.
Resumo:
The importance of inter-organizational trust to project success has been increasingly highlighted in the construction industry. This study aims to explore the role of trust between project parties. It adopts a combination of quantitative and qualitative methodologies. Based on the analysis of the responses of a questionnaire survey, trust is demonstrated to have a significant contribution to the development of cooperative or collaborative relationships; fostering trust proves to have a major influence on the improvement of project performance; and some relationship and performance indicators are found to have closer associations with trust than others so that trust is more important to
the development of relationship and the improvement of performance in these aspects. The analysis of questionnaire responses also provides significant evidence for the reduction in monitoring and control following the increase of mutual trust. The questionnaire survey is followed by a series of expert interviews, both of which contribute to the establishment of a model that links trust with relationship and performance and distinguishes the new approach that is based on trust from the traditional mechanism that relies on monitoring and control.
Resumo:
This paper employs a unique extension-decomposition-aggregation (EDA) scheme to solve the formation flight control problem for multiple unmanned aerial vehicles (UAVs). The corresponding decentralised longitudinal and lateral formation autopilots are novelly designed to maintain the overall formation stability when encountering changes of the formation error and topologies. The concept of propagation layer number (PLN) is also proposed to provide an intuitive criterion to judge which type of formation topology is more suitable to minimise formation error propagation (FEP). The criterion states that the smaller the PLN of the formation is, the quicker the response to the formation error is. A smaller PLN also means that the resulting topology provides better prevention to the FEP. Simulation studies of formation flight of multiple Aerosonde UAVs demonstrate that the designed formation controller based on the EDA strategy performs satisfactorily in maintaining the overall formation stable, and the bidirectional partial-mesh topology is found to provide the best overall response to the formation error propagation based on the PLN criterion.
Resumo:
A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.
Resumo:
Most studies examining the relationship between social cleavages and party system fragmentation maintain that higher levels of social diversity lead to greater party system fragmentation. However, most aggregate-level studies focus on one type of social cleavage:ethnic diversity. In order to develop a better understanding of how different cleavages impact electoral competition, this paper considers another type of social cleavage: religious diversity.Contrary to previous literature, higher levels of religious diversity provide incentives for cross-religious cooperation, which in turn reduces party system fragmentation. Using a cross national data set of elections from 1946-2011, the results show that, in contrast to most studies examining the effects of social cleavage diversity on the number of parties, higher religious diversity is associated with lower levels of party system fragmentation.