899 resultados para Matriz laplaciana
Resumo:
135 p.
Resumo:
As galerias ripícolas são habitats com uma grande disponibilidade de recursos alimentares e abrigo para a fauna, estando entre os habitats mais importantes e vulneráveis do mundo. São uma fonte de produção de frutos, o que atrai muitos animais, como as aves frugívoras, que são os principais dispersores de sementes na bacia do Mediterrâneo. O objetivo principal deste estudo foi estudar os padrões de dispersão de sementes por aves na interface galeria ripícola-matriz florestal envolvente (Montado). Foram marcadas com fluorescência plantas-mãe produtoras de frutos, e utilizadas armadilhas para sementes e transectos, para a recolha dos dejetos de aves onde, posteriormente, se detetaram as sementes dispersadas. Constatou-se que a dispersão de sementes e a abundância de plantas-mãe foi superior a distâncias mais próximas da ribeira, diminuindo à medida que esta distância aumenta. A espécie mais dispersada foi Smilax aspera e as espécies com sementes de menor dimensão, foram dispersadas a uma maior distância da planta-mãe, provavelmente devido a este tipo de sementes permanecerem mais tempo no trato intestinal das aves. Os resultados deste estudo apresentam algumas implicações para a colonização da matriz adjacente por plantas produtoras de frutos; ABSTRACT: Riparian galleries are habitats with a large availability food resources and shelter for animals, being among the most important and vulnerable habitats in the world. These zones are a great source of fruits attracting many animals, such as frugivorous birds, which are the main seed dispersers in the Mediterranean basin. The objective of this thesis is the study of seed dispersal patterns by birds, in the riparian gallery and in the surrounding forest matrix (Montado). Fruits of several plant species were used to collect bird droppings and detect fluorescent seeds in those droppings. Fruit abundance and seed dispersal were higher close to the stream, and decreased rapidly with an increase in distance from the stream. From all species, the most dispersed was Smilax aspera and species with smaller seed were found at a significantly larger distance from parents plants than species with large seeds. This can be explained by the fact that smaller seed stay longer in the intestinal tract of the birds. The results of this study present some implications for the colonization of freshly fruit plants from the riparian gallery into the adjacent matrix.
Resumo:
Nowadays the environmental issues are increasingly highlighted since the future of humanity is dependent on the actions taken by man. Major efforts are being expended in pursuit of knowledge and alternatives to promote sustainable development without compromising the environment. In recent years there has been a marked growth in the development of reinforced composite fiber plants, as an alternative for economic and ecological effects, especially in the substitution of synthetic materials such as reinforcement material in composites. In this current study the chemical- physical or (thermophysics )characteristics of the babassu coconut fiber, derived from the epicarp of the fruit (Orbignyda Phalerata), which the main constituents of the fiber: Klason lignin, insoluble, cellulose, holocellulose, hemicellulose and the content of ash and moisture will be determined. A study was conducted about the superficial modification of the fibers of the epicarp babassu coconut under the influence of chemical treatment by alkalinization, in an aqueous solution of NaOH to 2.5% (m/v) and to 5.0% to improve the compatibility matrix / reinforcement composite with epoxy matrix. The results of the changes occurred in staple fibers through the use of the techniques of thermogravimetric analyses (TG) and differential scanning calorimetry (DSC). The results found on thermal analysis on samples of fiber without chemical treatment (alkalinities), and on fiber samples treated by alkalinization show that the proposed chemical treatment increases the thermal stability of the fibers and provides a growth of the surface of area fibers, parameters that enhance adhesion fiber / composite. The findings were evaluated and compared with published results from other vegetable fibers, showing that the use of babassu coconut fibers has technical and economic potential for its use as reinforcement in composites
Resumo:
Microalloyed steels constitute a specific class of steel with low amount of carbon and microalloying elements such as Vanadium (V), Niobium (Nb) and Titanium (Ti). The development and application of microalloyed steels and steels in general are limited to the handling of powders with particles of submicron or nanometer dimensions. Therefore, this work presents an alternative in order to construction of microalloyed steels utilizing the deposition by magnetron sputtering technique as a microalloying element addiction in which Ti nanoparticles are dispersed in an iron matrix. The advantage of that technique in relation to the conventional metallurgical processes is the possibility of uniformly disperse the microalloying elements in the iron matrix. It was carried out deposition of Ti onto Fe powder in high CH4, H2, Ar plasma atmosphere, with two deposition times. After the deposition, the iron powder with nanoparticles of Ti dispersed distributed, were compacted and sintered at 1120 ° C in resistive furnace. Characterization techniques utilized in the samples of powder before and after deposition of Ti were Granulometry, Scanning Electron Microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (DRX). In the case of sintered samples, it was carried out characterization by SEM and Vickers Microhardness assays. The results show which the deposition technique by magnetron sputtering is practicable in the dispersion of particles in iron matrix. The EDX microanalysis detected higher percentages of Ti when the deposition were carried out with the inert gas and when the deposition process was carried out with reactive gas. The presence of titanium in iron matrix was also evidenced by the results of X-ray diffraction peaks that showed shifts in the network matrix. Given these results it can be said that the technique of magnetron sputtering deposition is feasible in the dispersion of nanoparticles of iron matrix in Ti.
Resumo:
The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers
Resumo:
33 hojas.
Resumo:
Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures
Resumo:
No número 18 do “Boletim Trimestral” apresentámos os principais resultados do estudo que elaborou a Matriz Input-Output da Região Alentejo (MIO-Alentejo). Com este texto prosseguimos o propósito de divulgação dos resultados e conclusões do projeto, mas adotando agora uma perspectiva mais focalizada. Em particular, interessa-nos de momento olhar para o processo de formação do valor acrescentado, ou, de forma equivalente, para a distribuição do rendimento gerado na produção, sob a forma de remuneração dos diferentes fatores produtivos (3º quadrante). Nos pontos 2, 3, e 4 apresentamos os resultados e, em conclusão, deixamos algumas considerações finais no ponto 5. Anexamos um glossário com uma breve descrição metodológica.
Resumo:
The 15Kh2MFA steel is a kind of Cr-Mo-V family steels and can be used in turbines for energy generation, pressure vessels, nuclear reactors or applications where the range of temperature that the material works is between 250 to 450°C. To improve the properties of these steels increasing the service temperature and the thermal stability is add a second particle phase. These particles can be oxides, carbides, nitrites or even solid solution of some chemical elements. On this way, this work aim to study the effect of addition of 3wt% of niobium carbide in the metallic matrix of 15Kh2MFA steel. Powder metallurgy was the route employed to produce this metallic matrix composite. Two different milling conditions were performed. Condition 1: milling of pure 15Kh2MFA steel and condition 2: milling of 15Kh2MFA steel with addition of niobium carbide. A high energy milling was carried out during 5 hours. Then, these two powders were sintered in a vacuum furnace (10-4torr) at 1150 and 1250°C during 60 minutes. After sintering the samples were normalized at 950°C per 3 minutes followed by air cooling to obtain a desired microstructure. Results show that the addition of niobium carbide helps to mill faster the particles during the milling when compared with that steel without carbide. At the sintering, the niobium carbide helps to sinter increasing the density of the samples reaching a maximum density of 7.86g/cm³, better than the melted steel as received that was 7,81g/cm³. In spite this good densification, after normalizing, the niobium carbide don t contributed to increase the microhardness. The best microhardness obtained to the steel with niobium carbide was 156HV and to pure 15Kh2MFA steel was 212HV. It happened due when the niobium carbide is added to the steel a pearlitic structure was formed, and the steel without niobium carbide submitted to the same conditions reached a bainitic structure
Reguladores da expressão do gene da proteía Gla da matriz (MGP) numa linha celular derivada de peixe
Resumo:
Dissertação de mest. em Biotecnologia, Faculdade de Engenharia de Recursos Naturais, Univ. do Algarve, 2004
Resumo:
Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results
Resumo:
Steel is an alloy EUROFER promising for use in nuclear reactors, or in applications where the material is subjected to temperatures up to 550 ° C due to their lower creep resistance under. One way to increase this property, so that the steel work at higher temperatures it is necessary to prevent sliding of its grain boundaries. Factors that influence this slip contours are the morphology of the grains, the angle and speed of the grain boundaries. This speed can be decreased in the presence of a dispersed phase in the material, provided it is fine and homogeneously distributed. In this context, this paper presents the development of a new material metal matrix composite (MMC) which has as starting materials as stainless steel EUROFER 97, and two different kinds of tantalum carbide - TaC, one with average crystallite sizes 13.78 nm synthesized in UFRN and another with 40.66 nm supplied by Aldrich. In order to improve the mechanical properties of metal matrix was added by powder metallurgy, nano-sized particles of the two types of TaC. This paper discusses the effect of dispersion of carbides in the microstructure of sintered parts. Pure steel powders with the addition of 3% TaC UFRN and 3% TaC commercial respectively, were ground in grinding times following: a) 5 hours in the planetary mill for all post b) 8 hours of grinding in the mill Planetary only for steel TaC powders of commercial and c) 24 hours in the conventional ball mill mixing the pure steel milled for 5 hours in the planetary mill with 3% TaC commercial. Each of the resulting particulate samples were cold compacted under a uniaxial pressure of 600MPa, on a cylindrical matrix of 5 mm diameter. Subsequently, the compressed were sintered in a vacuum furnace at temperatures of 1150 to 1250 ° C with an increment of 20 ° C and 10 ° C per minute and maintained at these isotherms for 30, 60 and 120 minutes and cooled to room temperature. The distribution, size and dispersion of steel and composite particles were determined by x-ray diffraction, scanning electron microscopy followed by chemical analysis (EDS). The structures of the sintered bodies were observed by optical microscopy and scanning electron accompanied by EDS beyond the x-ray diffraction. Initial studies sintering the obtained steel EUROFER 97 a positive reply in relation to improvement of the mechanical properties independent of the processing, because it is obtained with sintered microhardness values close to and even greater than 100% of the value obtained for the HV 333.2 pure steel as received in the form of a bar
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.