869 resultados para Markov chains hidden Markov models Viterbi algorithm Forward-Backward algorithm maximum likelihood


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Milk, fat, and protein yields of Holstein cows from the States of New York and California in the United States were used to estimate (co)variances among yields in the first three lactations, using an animal model and a derivative-free restricted maximum likelihood (REML) algorithm, and to verify if yields in different lactations are the same trait. The data were split in 20 samples, 10 from each state, with means of 5463 and 5543 cows per sample from California and New York. Mean heritability estimates for milk, fat, and protein yields for California data were, respectively, 0.34, 0.35, and 0.40 for first; 0.31, 0.33, and 0.39 for second; and 0.28, 0.31, and 0.37 for third lactations. For New York data, estimates were 0.35, 0.40, and 0.34 for first; 0.34, 0.44, and 0.38 for second; and 0.32, 0.43, and 0.38 for third lactations. Means of estimates of genetic correlations between first and second, first and third, and second and third lactations for California data were 0.86, 0.77, and 0.96 for milk; 0.89, 0.84, and 0.97 for fat; and 0.90, 0.84, and 0.97 for protein yields. Mean estimates for New York data were 0.87, 0.81, and 0.97 for milk; 0.91, 0.86, and 0.98 for fat; and 0.88, 0.82, and 0.98 for protein yields. Environmental correlations varied from 0.30 to 0.50 and were larger between second and third lactations. Phenotypic correlations were similar for both states and varied from 0.52 to 0.66 for milk, fat and protein yields. These estimates are consistent with previous estimates obtained with animal models. Yields in different lactations are not statistically the same trait but for selection programs such yields can be modelled as the same trait because of the high genetic correlations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this study were to estimate genetic parameters for test-day milk, fat and protein yields, in Murrah buffaloes. In this study 4,757 complete lactations of Murrah buffaloes were analyzed. The (co) variance components were estimated by restricted maximum likelihood using MTDFREML software. The bi-trait animal test-day models included genetic additive direct and permanent environment effects, as random effects, and the fixed effects of contemporary group (herds-year-month of control) and age of the cow at calving as linear and quadratic covariable. The heritability estimate at first control was 0.19, increased until the third control (0.24), decreasing thereafter, reaching the lowest value at the ninth control (0.09). The highest heritability estimates for fat and protein yield were 0.23 (first control) and 0.33 (third control), respectively. For milk yield, genetic and phenotypic correlation estimates ranged from 0.37 to 0.99 and from 0.52 to 0.94, respectively. Genetic correlations were higher than phenotypic ones. For fat and protein yields, genetic correlation estimates ranged from 0.42 to 0.97.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to contribute to the genetic breeding programs of buffaloes, this study aimed to determine the influence of environmental effects on the stayability (ST) of dairy female Murrah buffalo in the herd. Data from 1016 buffaloes were used. ST was defined as the ability of the female to remain in the herd for 1, 2, 3, 4, 5 or 6 years after the first calving. Environmental effects were studied by survival analysis, adjusted to the fixed effects of farm, year and season of birth, class of first-lactation milk yield and age at first calving. The data were analyzed using the LIFEREG procedure of the SAS program that fits parametric models to failure time data (culling or ST = 0), and estimates parameters by maximum likelihood estimation. Breeding farm, year of birth and first-lactation milk yield significantly influenced (P < 0.0001) the ST to the specific ages (1 to 6 years after the first calving). Buffaloes that were older at first calving presented higher probabilities of being culled 1 year after the first calving, without any effect on culling at older ages. Buffaloes with a higher milk yield at first calving presented a lower culling probability and remained for a longer period of time in the herd. The effects of breeding farm, year of birth and first-lactation milk yield should be included in models used for the analysis of ST in buffaloes. Copyright © The Animal Consortium 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we deal with the problem of overdispersion beyond extra zeros for a collection of counts that can be correlated. Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial distributions have been considered. First, we propose a multivariate count model in which all counts follow the same distribution and are correlated. Then we extend this model in a sense that correlated counts may follow different distributions. To accommodate correlation among counts, we have considered correlated random effects for each individual in the mean structure, thus inducing dependency among common observations to an individual. The method is applied to real data to investigate variation in food resources use in a species of marsupial in a locality of the Brazilian Cerrado biome. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The exponential-logarithmic is a new lifetime distribution with decreasing failure rate and interesting applications in the biological and engineering sciences. Thus, a Bayesian analysis of the parameters would be desirable. Bayesian estimation requires the selection of prior distributions for all parameters of the model. In this case, researchers usually seek to choose a prior that has little information on the parameters, allowing the data to be very informative relative to the prior information. Assuming some noninformative prior distributions, we present a Bayesian analysis using Markov Chain Monte Carlo (MCMC) methods. Jeffreys prior is derived for the parameters of exponential-logarithmic distribution and compared with other common priors such as beta, gamma, and uniform distributions. In this article, we show through a simulation study that the maximum likelihood estimate may not exist except under restrictive conditions. In addition, the posterior density is sometimes bimodal when an improper prior density is used. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the composition of this work are present two parts. The first part contains the theory used. The second part contains the two articles. The first article examines two models of the class of generalized linear models for analyzing a mixture experiment, which studied the effect of different diets consist of fat, carbohydrate, and fiber on tumor expression in mammary glands of female rats, given by the ratio mice that had tumor expression in a particular diet. Mixture experiments are characterized by having the effect of collinearity and smaller sample size. In this sense, assuming normality for the answer to be maximized or minimized may be inadequate. Given this fact, the main characteristics of logistic regression and simplex models are addressed. The models were compared by the criteria of selection of models AIC, BIC and ICOMP, simulated envelope charts for residuals of adjusted models, odds ratios graphics and their respective confidence intervals for each mixture component. It was concluded that first article that the simplex regression model showed better quality of fit and narrowest confidence intervals for odds ratio. The second article presents the model Boosted Simplex Regression, the boosting version of the simplex regression model, as an alternative to increase the precision of confidence intervals for the odds ratio for each mixture component. For this, we used the Monte Carlo method for the construction of confidence intervals. Moreover, it is presented in an innovative way the envelope simulated chart for residuals of the adjusted model via boosting algorithm. It was concluded that the Boosted Simplex Regression model was adjusted successfully and confidence intervals for the odds ratio were accurate and lightly more precise than the its maximum likelihood version.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia Animal - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of Guzera breeding programs for milk production in the tropics, the objective of this study was to compare alternative random regression models for estimation of genetic parameters and prediction of breeding values. Test-day milk yields records (TDR) were collected monthly, in a maximum of 10 measurements. The database included 20,524 records of first lactation from 2816 Guzera cows. TDR data were analyzed by random regression models (RRM) considering additive genetic, permanent environmental and residual effects as random and the effects of contemporary group (CG), calving age as a covariate (linear and quadratic effects) and mean lactation curve as fixed. The genetic additive and permanent environmental effects were modeled by RRM using Wilmink, All and Schaeffer and cubic B-spline functions as well as Legendre polynomials. Residual variances were considered as heterogeneous classes, grouped differently according to the model used. Multi-trait analysis using finite-dimensional models (FDM) for testday milk records (TDR) and a single-trait model for 305-days milk yields (default) using the restricted maximum likelihood method were also carried out as further comparisons. Through the statistical criteria adopted, the best RRM was the one that used the cubic B-spline function with five random regression coefficients for the genetic additive and permanent environmental effects. However, the models using the Ali and Schaeffer function or Legendre polynomials with second and fifth order for, respectively, the additive genetic and permanent environmental effects can be adopted, as little variation was observed in the genetic parameter estimates compared to those estimated by models using the B-spline function. Therefore, due to the lower complexity in the (co)variance estimations, the model using Legendre polynomials represented the best option for the genetic evaluation of the Guzera lactation records. An increase of 3.6% in the accuracy of the estimated breeding values was verified when using RRM. The ranks of animals were very close whatever the RRM for the data set used to predict breeding values. Considering P305, results indicated only small to medium difference in the animals' ranking based on breeding values predicted by the conventional model or by RRM. Therefore, the sum of all the RRM-predicted breeding values along the lactation period (RRM305) can be used as a selection criterion for 305-day milk production. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop spatial statistical models for stream networks that can estimate relationships between a response variable and other covariates, make predictions at unsampled locations, and predict an average or total for a stream or a stream segment. There have been very few attempts to develop valid spatial covariance models that incorporate flow, stream distance, or both. The application of typical spatial autocovariance functions based on Euclidean distance, such as the spherical covariance model, are not valid when using stream distance. In this paper we develop a large class of valid models that incorporate flow and stream distance by using spatial moving averages. These methods integrate a moving average function, or kernel, against a white noise process. By running the moving average function upstream from a location, we develop models that use flow, and by construction they are valid models based on stream distance. We show that with proper weighting, many of the usual spatial models based on Euclidean distance have a counterpart for stream networks. Using sulfate concentrations from an example data set, the Maryland Biological Stream Survey (MBSS), we show that models using flow may be more appropriate than models that only use stream distance. For the MBSS data set, we use restricted maximum likelihood to fit a valid covariance matrix that uses flow and stream distance, and then we use this covariance matrix to estimate fixed effects and make kriging and block kriging predictions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lemonte and Cordeiro [Birnbaum-Saunders nonlinear regression models, Comput. Stat. Data Anal. 53 (2009), pp. 4441-4452] introduced a class of Birnbaum-Saunders (BS) nonlinear regression models potentially useful in lifetime data analysis. We give a general matrix Bartlett correction formula to improve the likelihood ratio (LR) tests in these models. The formula is simple enough to be used analytically to obtain several closed-form expressions in special cases. Our results generalize those in Lemonte et al. [Improved likelihood inference in Birnbaum-Saunders regressions, Comput. Stat. DataAnal. 54 (2010), pp. 1307-1316], which hold only for the BS linear regression models. We consider Monte Carlo simulations to show that the corrected tests work better than the usual LR tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many applications of lifetime data analysis, it is important to perform inferences about the change-point of the hazard function. The change-point could be a maximum for unimodal hazard functions or a minimum for bathtub forms of hazard functions and is usually of great interest in medical or industrial applications. For lifetime distributions where this change-point of the hazard function can be analytically calculated, its maximum likelihood estimator is easily obtained from the invariance properties of the maximum likelihood estimators. From the asymptotical normality of the maximum likelihood estimators, confidence intervals can also be obtained. Considering the exponentiated Weibull distribution for the lifetime data, we have different forms for the hazard function: constant, increasing, unimodal, decreasing or bathtub forms. This model gives great flexibility of fit, but we do not have analytic expressions for the change-point of the hazard function. In this way, we consider the use of Markov Chain Monte Carlo methods to get posterior summaries for the change-point of the hazard function considering the exponentiated Weibull distribution.