900 resultados para Magnetic Resonance Imaging
Resumo:
Use of dipolar and quadrupolar couplings for quantum information processing (QIP) by nuclear magnetic resonance (NMR) is described. In these cases, instead of the individual spins being qubits, the 2(n) energy levels of the spin-system can be treated as an n-qubit system. It is demonstrated that QIP in such systems can be carried out using transition-selective pulses, in (CHCN)-C-3, (CH3CN)-C-13, Li-7 (I = 3/2) and Cs-133 (I = 7/2), oriented in liquid crystals yielding 2 and 3 qubit systems. Creation of pseudopure states, implementation of logic gates and arithmetic operations (half-adder and subtractor) have been carried out in these systems using transition-selective pulses.
Resumo:
The Ulam’s problem is a two person game in which one of the player tries to search, in minimum queries, a number thought by the other player. Classically the problem scales polynomially with the size of the number. The quantum version of the Ulam’s problem has a query complexity that is independent of the dimension of the search space. The experimental implementation of the quantum Ulam’s problem in a Nuclear Magnetic Resonance Information Processor with 3 quantum bits is reported here.
Resumo:
The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and N-15 backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 +/- 0.06 angstrom for backbone atoms and 0.8 +/- 0.06 angstrom for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed beta-sheet that is fenced by five alpha-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg2+ interaction has been found to be similar to 1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.
Resumo:
Cobalt ferrite (CoFe2O4) is an engineering material which is used for applications such as magnetic cores, magnetic switches, hyperthermia based tumor treatment, and as contrast agents for magnetic resonance imaging. Utility of ferrites nanoparticles hinges on its size, dispersibility in solutions, and synthetic control over its coercivity. In this work, we establish correlations between room temperature co-precipitation conditions, and these crucial materials parameters. Furthermore, post-synthesis annealing conditions are correlated with morphology, changes in crystal structure and magnetic properties. We disclose the synthesis and process conditions helpful in obtaining easily sinterable CoFe2O4 nanoparticles with coercive magnetic flux density (H-c) in the range 5.5-31.9 kA/m and M-s in the range 47.9-84.9 A.m(2)Kg(-1). At a grain size of similar to 54 +/- 2 nm (corresponding to 1073 K sintering temperature), multi-domain behavior sets in, which is indicated by a decrease in H-c. In addition, we observe an increase in lattice constant with respect to grain size, which is the inverse of what is expected of in ferrites. Our results suggest that oxygen deficiency plays a crucial role in explaining this inverse trend. We expect the method disclosed here to be a viable and scalable alternative to thermal decomposition based CoFe2O4 synthesis. The magnetic trends reported will aid in the optimization of functional CoFe2O4 nanoparticles
Resumo:
Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.
Resumo:
To explore the effect of size reduction to nanoscale on the hole doped Sm0.65Ca0.35MnO3 compound, dc magnetic measurements and electron magnetic resonance (EMR) were done on bulk and nanoparticle samples in the temperature range 10 <= T <= 300 K. Magnetization measurement showed that the bulk sample undergoes a charge ordering transition at 240K and shows a mixed magnetic phase at low temperature. However, the nanosample underwent a ferromagnetic transition at 75 K, and the charge ordered state was destabilized on size reduction down to nanoscale. The low-temperature ferromagnetic component is found to be enhanced in nanoparticles as compared to their bulk counterpart. Interestingly around room temperature, bulk particles show higher magnetization where as at low temperature nanoparticles show higher magnetization. Ferromagnetism in the bulk is due to super exchange where as ferromagnetism in nanoparticles is due to uncompensated spins of the surface layer. Temperature variation of EMR parameters correlates well with the results of magnetic measurements. The magnetic behaviour of the nanoparticles is understood in terms of the core shell scenario. (C) 2015 AIP Publishing LLC.
Resumo:
We report a systematic investigation of the temperature dependence of electron magnetic resonance (EMR) line width, intensity and resonance field for similar to 25 nm Nd0.65Ca0.35MnO3 (NCMO1), Nd0.65Ca0.35Mn0.94Cr0.06O3 (NCMO2) and Nd0.65Ca0.35Mn0.9Cr0.1O3 (NCMO3) nanoparticles prepared by sol-gel method. The EMR line widths for the three nano-samples differ significantly from one another below a temperature T (min) where the line width has a minimum. T (min) was found to be 130, 100 and 120 K for NCMO1, NCMO2 and NCMO3, respectively. Well above T (min) the line width values for the three samples are close to one another. The sharp upturn of EMR line width below T (min) is attributed to the formation of short range, ferromagnetically ordered clusters. Temperature dependence of EMR intensity shows a residual CO transition in NCMO1 and NCMO2 and a complete disappearance of it in NCMO3. The intensity undergoes significant increase below 120, 80 and 100 K for NCMO1, NCMO2 and NCMO3, respectively, indicating the onset of ferromagnetic transitions. The occurrence of ferromagnetic transition is further confirmed by magnetization hysteresis measurements. The decrease in T (C) in NCMO2 and NCMO3 compared to NCMO1 nanoparticles is understood to be due to the destruction of the double-exchange interaction by chromium doping. The resonance field decreases below the ferromagnetic onset temperatures for all the samples as expected. The combined effects of the reduction in size and of chromium doping in Mn site are discussed.
Resumo:
Mesophase organization of molecules built with thiophene at the center and linked via flexible spacers to rigid side arm core units and terminal alkoxy chains has been investigated. Thirty homologues realized by varying the span of the spacers as well as the length of the terminal chains have been studied. In addition to the enantiotropic nematic phase observed for all the mesogens, the increase of the spacer as well as the terminal chain lengths resulted in the smectic C phase. The molecular organization in the smectic phase as investigated by temperature dependent X-ray diffraction measurements revealed an interesting behavior that depended on the length of the spacer vis-a-vis the length of the terminal chain. Thus, a tilted interdigitated partial bilayer organization was observed for molecules with a shorter spacer length, while a tilted monolayer arrangement was observed for those with a longer spacer length. High-resolution solid state C-13 NMR studies carried out for representative mesogens indicated a U-shape for all the molecules, indicating that intermolecular interactions and molecular dynamics rather than molecular shape are responsible for the observed behavior. Models for the mesophase organization have been considered and the results understood in terms of segregation of incompatible parts of the mesogens combined with steric frustration leading to the observed lamellar order.
Resumo:
A novel spectroscopy of trapped ions is proposed which will bring single-ion detection sensitivity to the observation of magnetic resonance spectra. The approaches developed here are aimed at resolving one of the fundamental problems of molecular spectroscopy, the apparent incompatibility in existing techniques between high information content (and therefore good species discrimination) and high sensitivity. Methods for studying both electron spin resonance (ESR) and nuclear magnetic resonance (NMR) are designed. They assume established methods for trapping ions in high magnetic field and observing the trapping frequencies with high resolution (<1 Hz) and sensitivity (single ion) by electrical means. The introduction of a magnetic bottle field gradient couples the spin and spatial motions together and leads to a small spin-dependent force on the ion, which has been exploited by Dehmelt to observe directly the perturbation of the ground-state electron's axial frequency by its spin magnetic moment.
A series of fundamental innovations is described m order to extend magnetic resonance to the higher masses of molecular ions (100 amu = 2x 10^5 electron masses) and smaller magnetic moments (nuclear moments = 10^(-3) of the electron moment). First, it is demonstrated how time-domain trapping frequency observations before and after magnetic resonance can be used to make cooling of the particle to its ground state unnecessary. Second, adiabatic cycling of the magnetic bottle off between detection periods is shown to be practical and to allow high-resolution magnetic resonance to be encoded pointwise as the presence or absence of trapping frequency shifts. Third, methods of inducing spindependent work on the ion orbits with magnetic field gradients and Larmor frequency irradiation are proposed which greatly amplify the attainable shifts in trapping frequency.
The dissertation explores the basic concepts behind ion trapping, adopting a variety of classical, semiclassical, numerical, and quantum mechanical approaches to derive spin-dependent effects, design experimental sequences, and corroborate results from one approach with those from another. The first proposal presented builds on Dehmelt's experiment by combining a "before and after" detection sequence with novel signal processing to reveal ESR spectra. A more powerful technique for ESR is then designed which uses axially synchronized spin transitions to perform spin-dependent work in the presence of a magnetic bottle, which also converts axial amplitude changes into cyclotron frequency shifts. A third use of the magnetic bottle is to selectively trap ions with small initial kinetic energy. A dechirping algorithm corrects for undesired frequency shifts associated with damping by the measurement process.
The most general approach presented is spin-locked internally resonant ion cyclotron excitation, a true continuous Stern-Gerlach effect. A magnetic field gradient modulated at both the Larmor and cyclotron frequencies is devised which leads to cyclotron acceleration proportional to the transverse magnetic moment of a coherent state of the particle and radiation field. A preferred method of using this to observe NMR as an axial frequency shift is described in detail. In the course of this derivation, a new quantum mechanical description of ion cyclotron resonance is presented which is easily combined with spin degrees of freedom to provide a full description of the proposals.
Practical, technical, and experimental issues surrounding the feasibility of the proposals are addressed throughout the dissertation. Numerical ion trajectory simulations and analytical models are used to predict the effectiveness of the new designs as well as their sensitivity and resolution. These checks on the methods proposed provide convincing evidence of their promise in extending the wealth of magnetic resonance information to the study of collisionless ions via single-ion spectroscopy.