804 resultados para Machine Learning Techniques


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Machine learning comprises a series of techniques for automatic extraction of meaningful information from large collections of noisy data. In many real world applications, data is naturally represented in structured form. Since traditional methods in machine learning deal with vectorial information, they require an a priori form of preprocessing. Among all the learning techniques for dealing with structured data, kernel methods are recognized to have a strong theoretical background and to be effective approaches. They do not require an explicit vectorial representation of the data in terms of features, but rely on a measure of similarity between any pair of objects of a domain, the kernel function. Designing fast and good kernel functions is a challenging problem. In the case of tree structured data two issues become relevant: kernel for trees should not be sparse and should be fast to compute. The sparsity problem arises when, given a dataset and a kernel function, most structures of the dataset are completely dissimilar to one another. In those cases the classifier has too few information for making correct predictions on unseen data. In fact, it tends to produce a discriminating function behaving as the nearest neighbour rule. Sparsity is likely to arise for some standard tree kernel functions, such as the subtree and subset tree kernel, when they are applied to datasets with node labels belonging to a large domain. A second drawback of using tree kernels is the time complexity required both in learning and classification phases. Such a complexity can sometimes prevents the kernel application in scenarios involving large amount of data. This thesis proposes three contributions for resolving the above issues of kernel for trees. A first contribution aims at creating kernel functions which adapt to the statistical properties of the dataset, thus reducing its sparsity with respect to traditional tree kernel functions. Specifically, we propose to encode the input trees by an algorithm able to project the data onto a lower dimensional space with the property that similar structures are mapped similarly. By building kernel functions on the lower dimensional representation, we are able to perform inexact matchings between different inputs in the original space. A second contribution is the proposal of a novel kernel function based on the convolution kernel framework. Convolution kernel measures the similarity of two objects in terms of the similarities of their subparts. Most convolution kernels are based on counting the number of shared substructures, partially discarding information about their position in the original structure. The kernel function we propose is, instead, especially focused on this aspect. A third contribution is devoted at reducing the computational burden related to the calculation of a kernel function between a tree and a forest of trees, which is a typical operation in the classification phase and, for some algorithms, also in the learning phase. We propose a general methodology applicable to convolution kernels. Moreover, we show an instantiation of our technique when kernels such as the subtree and subset tree kernels are employed. In those cases, Direct Acyclic Graphs can be used to compactly represent shared substructures in different trees, thus reducing the computational burden and storage requirements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the collective imaginaries a robot is a human like machine as any androids in science fiction. However the type of robots that you will encounter most frequently are machinery that do work that is too dangerous, boring or onerous. Most of the robots in the world are of this type. They can be found in auto, medical, manufacturing and space industries. Therefore a robot is a system that contains sensors, control systems, manipulators, power supplies and software all working together to perform a task. The development and use of such a system is an active area of research and one of the main problems is the development of interaction skills with the surrounding environment, which include the ability to grasp objects. To perform this task the robot needs to sense the environment and acquire the object informations, physical attributes that may influence a grasp. Humans can solve this grasping problem easily due to their past experiences, that is why many researchers are approaching it from a machine learning perspective finding grasp of an object using information of already known objects. But humans can select the best grasp amongst a vast repertoire not only considering the physical attributes of the object to grasp but even to obtain a certain effect. This is why in our case the study in the area of robot manipulation is focused on grasping and integrating symbolic tasks with data gained through sensors. The learning model is based on Bayesian Network to encode the statistical dependencies between the data collected by the sensors and the symbolic task. This data representation has several advantages. It allows to take into account the uncertainty of the real world, allowing to deal with sensor noise, encodes notion of causality and provides an unified network for learning. Since the network is actually implemented and based on the human expert knowledge, it is very interesting to implement an automated method to learn the structure as in the future more tasks and object features can be introduced and a complex network design based only on human expert knowledge can become unreliable. Since structure learning algorithms presents some weaknesses, the goal of this thesis is to analyze real data used in the network modeled by the human expert, implement a feasible structure learning approach and compare the results with the network designed by the expert in order to possibly enhance it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nel lavoro di tesi qui presentato si indaga l'applicazione di tecniche di apprendimento mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint solver). Un constraint solver è un programma che dato in input un problema di vincoli, elabora una soluzione mediante l'utilizzo di svariate tecniche. I problemi di vincoli sono altamente presenti nella vita reale. Esempi come l'organizzazione dei viaggi dei treni oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi di vincoli. Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori appartenenti ad uno specico dominio ed un insieme di vincoli che mettono in relazione variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am- biti come quelli economici, prevede la combinazione di più solver i quali assieme possono generare risultati migliori di un approccio a singolo solver. In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio di constraint solver con tecniche di machine learning. Il machine learning è un campo di intelligenza articiale che si pone l'obiettivo di immettere nelle macchine una sorta di `intelligenza'. Un esempio applicativo potrebbe essere quello di valutare i casi passati di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a livello cognitivo umano. Nello specico, vogliamo ragionare in termini di classicazione. Una classicazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un valore discreto in output, come vero o falso se una mail è classicata come spam o meno. La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio di constraint solver sviluppato presso la University College of Cork (UCC). Di tale algoritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altresì dette features. Creeremo quindi una serie di classicatori basati sullo specifico comportamento dei solver. La combinazione di tali classicatori con l'approccio a portfolio sara nalizzata allo scopo di valutare che le feature di CPHydra siano buone e che i classicatori basati su tali feature siano affidabili. Per giusticare il primo risultato, eettueremo un confronto con uno dei migliori portfolio allo stato dell'arte, SATzilla. Una volta stabilita la bontà delle features utilizzate per le classicazioni, andremo a risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole costruite con classicatori precedentemente introdotti. Prima agiremo su uno scenario ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In questi esperimenti andremo a vericare che, le prestazioni ottenute tramite l'applicazione delle regole create appositamente sui classicatori, abbiano risultati migliori rispetto ad un'esecuzione limitata all'utilizzo del migliore solver del portfolio. I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso University College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientico alla International Joint Conference of Articial Intelligence (IJCAI) 2011. Al momento della consegna della tesi non siamo ancora stati informati dell'accettazione di tale articolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato risulta interessante.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Generic object recognition is an important function of the human visual system and everybody finds it highly useful in their everyday life. For an artificial vision system it is a really hard, complex and challenging task because instances of the same object category can generate very different images, depending of different variables such as illumination conditions, the pose of an object, the viewpoint of the camera, partial occlusions, and unrelated background clutter. The purpose of this thesis is to develop a system that is able to classify objects in 2D images based on the context, and identify to which category the object belongs to. Given an image, the system can classify it and decide the correct categorie of the object. Furthermore the objective of this thesis is also to test the performance and the precision of different supervised Machine Learning algorithms in this specific task of object image categorization. Through different experiments the implemented application reveals good categorization performances despite the difficulty of the problem. However this project is open to future improvement; it is possible to implement new algorithms that has not been invented yet or using other techniques to extract features to make the system more reliable. This application can be installed inside an embedded system and after trained (performed outside the system), so it can become able to classify objects in a real-time. The information given from a 3D stereocamera, developed inside the department of Computer Engineering of the University of Bologna, can be used to improve the accuracy of the classification task. The idea is to segment a single object in a scene using the depth given from a stereocamera and in this way make the classification more accurate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Questo lavoro è iniziato con uno studio teorico delle principali tecniche di classificazione di immagini note in letteratura, con particolare attenzione ai più diffusi modelli di rappresentazione dell’immagine, quali il modello Bag of Visual Words, e ai principali strumenti di Apprendimento Automatico (Machine Learning). In seguito si è focalizzata l’attenzione sulla analisi di ciò che costituisce lo stato dell’arte per la classificazione delle immagini, ovvero il Deep Learning. Per sperimentare i vantaggi dell’insieme di metodologie di Image Classification, si è fatto uso di Torch7, un framework di calcolo numerico, utilizzabile mediante il linguaggio di scripting Lua, open source, con ampio supporto alle metodologie allo stato dell’arte di Deep Learning. Tramite Torch7 è stata implementata la vera e propria classificazione di immagini poiché questo framework, grazie anche al lavoro di analisi portato avanti da alcuni miei colleghi in precedenza, è risultato essere molto efficace nel categorizzare oggetti in immagini. Le immagini su cui si sono basati i test sperimentali, appartengono a un dataset creato ad hoc per il sistema di visione 3D con la finalità di sperimentare il sistema per individui ipovedenti e non vedenti; in esso sono presenti alcuni tra i principali ostacoli che un ipovedente può incontrare nella propria quotidianità. In particolare il dataset si compone di potenziali ostacoli relativi a una ipotetica situazione di utilizzo all’aperto. Dopo avere stabilito dunque che Torch7 fosse il supporto da usare per la classificazione, l’attenzione si è concentrata sulla possibilità di sfruttare la Visione Stereo per aumentare l’accuratezza della classificazione stessa. Infatti, le immagini appartenenti al dataset sopra citato sono state acquisite mediante una Stereo Camera con elaborazione su FPGA sviluppata dal gruppo di ricerca presso il quale è stato svolto questo lavoro. Ciò ha permesso di utilizzare informazioni di tipo 3D, quali il livello di depth (profondità) di ogni oggetto appartenente all’immagine, per segmentare, attraverso un algoritmo realizzato in C++, gli oggetti di interesse, escludendo il resto della scena. L’ultima fase del lavoro è stata quella di testare Torch7 sul dataset di immagini, preventivamente segmentate attraverso l’algoritmo di segmentazione appena delineato, al fine di eseguire il riconoscimento della tipologia di ostacolo individuato dal sistema.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is to examine ways in which pedagogy and gender of instructor impact the development of self-regulated learning strategies as assessed by the Motivated Strategies for Learning Questionnaire (MSLQ) in male and female undergraduate engineering students. Pedagogy was operationalized as two general formats: lecture plus active learning techniques or problem-base/project-based learning. One hundred seventy-six students from four universities participated in the study. Within-group analyses found significant differences with regard to pedagogy, instructors’ gender, and student gender on the learning strategies and motivation subscales as operationalized by the MSLQ. Male and females students reported significant post-test differences with regard to the gender of instructor and the style of pedagogy. The results of this study showed a pattern where more positive responses for students of both genders were found with the same-gendered instructor. The results also suggested that male students responded more positively to project and problem-based courses with changes evidenced in motivation strategies and resource management. Female students showed decreases in resource management in these two types of courses. Further, female students reported increases in the lecture with active learning courses.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction or Statement of Problem: It is often challenging to get students in a large classroom setting actively involved in a classroom discussion. In order to help students appreciate the effects of low immunization rates, a classroom activity was developed using active learning techniques. This allowed the students to identify and appreciate the complexity of the issues concerning childhood immunizations. [See PDF for complete abstract]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mainstreaming the LforS approach is a challenge due to dive rging institutional priorities, customs, and expectations of classically traine d staff. A workshop to test LforS theory and practice, and explore how to mainstream it, took place in a concrete context in a rural district of Mozambique, focusing on agricultural, forest and water resources. The evaluation showed that the principles of interaction applied pe rmitted to link rational know ledge with practical experience through mutual learning and iterative self-reflection. The combination of learning techniques was considered usef ul; participants called for further opportunities to apply the LforS methodology, proposing next steps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last decade, a large number of software repositories have been created for different purposes. In this paper we present a survey of the publicly available repositories and classify the most common ones as well as discussing the problems faced by researchers when applying machine learning or statistical techniques to them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Microarray technique is rather powerful, as it allows to test up thousands of genes at a time, but this produces an overwhelming set of data files containing huge amounts of data, which is quite difficult to pre-process, separate, classify and correlate for interesting conclusions to be extracted. Modern machine learning, data mining and clustering techniques based on information theory, are needed to read and interpret the information contents buried in those large data sets. Independent Component Analysis method can be used to correct the data affected by corruption processes or to filter the uncorrectable one and then clustering methods can group similar genes or classify samples. In this paper a hybrid approach is used to obtain a two way unsupervised clustering for a corrected microarray data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mass spectrometry (MS) data provide a promising strategy for biomarker discovery. For this purpose, the detection of relevant peakbins in MS data is currently under intense research. Data from mass spectrometry are challenging to analyze because of their high dimensionality and the generally low number of samples available. To tackle this problem, the scientific community is becoming increasingly interested in applying feature subset selection techniques based on specialized machine learning algorithms. In this paper, we present a performance comparison of some metaheuristics: best first (BF), genetic algorithm (GA), scatter search (SS) and variable neighborhood search (VNS). Up to now, all the algorithms, except for GA, have been first applied to detect relevant peakbins in MS data. All these metaheuristic searches are embedded in two different filter and wrapper schemes coupled with Naive Bayes and SVM classifiers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As wireless sensor networks are usually deployed in unattended areas, security policies cannot be updated in a timely fashion upon identification of new attacks. This gives enough time for attackers to cause significant damage. Thus, it is of great importance to provide protection from unknown attacks. However, existing solutions are mostly concentrated on known attacks. On the other hand, mobility can make the sensor network more resilient to failures, reactive to events, and able to support disparate missions with a common set of sensors, yet the problem of security becomes more complicated. In order to address the issue of security in networks with mobile nodes, we propose a machine learning solution for anomaly detection along with the feature extraction process that tries to detect temporal and spatial inconsistencies in the sequences of sensed values and the routing paths used to forward these values to the base station. We also propose a special way to treat mobile nodes, which is the main novelty of this work. The data produced in the presence of an attacker are treated as outliers, and detected using clustering techniques. These techniques are further coupled with a reputation system, in this way isolating compromised nodes in timely fashion. The proposal exhibits good performances at detecting and confining previously unseen attacks, including the cases when mobile nodes are compromised.