967 resultados para MUCOSAL
Resumo:
Sjögren syndrome is a systemic autoimmune disease causing secretory gland dysfunction. This leads to dryness of the main mucosal surfaces such as the mouth, eyes, nose, pharynx, larynx, and vagina. 1 Sjögren syndrome may be a serious disease, with excess mortality caused by haematological cancer. 2 The cause of Sjögren syndrome is unknown, but factors postulated to play a role are both genetic and environmental .....
Resumo:
Cardiovascular failure and low flow states may arise in very different conditions from both cardiac and noncardiac causes. Systemic hemodynamic failure inevitably alters splanchnic blood flow but in an unpredictable way. Prolonged low splanchnic blood flow causes intestinal ischemia, increased mucosal permeability, endotoxemia, and distant organ failure. Mortality associated with intestinal ischemia is high. Why would enteral nutrition (EN) be desirable in these complex patients when parenteral nutrition could easily cover energy and substrate requirements? Metabolic, immune, and practical reasons justify the use of EN. In addition, continuous enteral feeding minimizes systemic and myocardial oxygen consumption in patients with congestive heart failure. Further, early feeding in critically ill mechanically ventilated patients has been shown to reduce mortality, particularly in the sickest patients. In a series of cardiac surgery patients with compromised hemodynamics, absorption has been maintained, and 1000-1200 kcal/d could be delivered by enteral feeding. Therefore, early EN in stabilized patients should be attempted, and can be carried out safely under close clinical monitoring, looking for signs of incipient intestinal ischemia. Energy delivery and balance should be monitored, and combined feeding considered when enteral feeds cannot be advanced to target within 4-6 days.
Resumo:
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Resumo:
Pallister-Killian syndrome (PKS) is a potentially lethal disorder with facial dysmorphism, pigmentary skin anomalies, developmental delay and major visceral anomalies, such as diaphragmatic hernia, anorectal malformation, and congenital heart disease. PKS is causally associated with mosaic tetrasomy of chromosome 12p. A routine chromosome analysis in peripheral lymphocytes usually fails to detect the mosaic state. A prompt diagnosis rests on clinical awareness and a subsequent chromosome or molecular analysis in fibroblasts, buccal mucosal cells, or bone marrow cells. We report here on three infants with PKS. One infant had aortic dilatation, a previously unreported association in PKS. More importantly, all infants showed a recognizable, though mild, pattern of skeletal changes mainly affecting axial bones, including delayed ossification of the vertebral bodies and pubic bones, flared anterior ribs, and broad metaphyses of the long bones, particularly of the femora. These skeletal changes should be considered as a useful diagnostic sign in PKS. Awareness of the axial skeletal alterations can be helpful in prompting clinicians to search for mosaic tetrasomy 12p and perform chromosomal analysis in appropriate tissue types.
Resumo:
In sentinel node (SN) biopsy, an interval SN is defined as a lymph node or group of lymph nodes located between the primary melanoma and an anatomically well-defined lymph node group directly draining the skin. As shown in previous reports, these interval SNs seem to be at the same metastatic risk as are SNs in the usual, classic areas. This study aimed to review the incidence, lymphatic anatomy, and metastatic risk of interval SNs. METHODS: SN biopsy was performed at a tertiary center by a single surgical team on a cohort of 402 consecutive patients with primary melanoma. The triple technique of localization was used-that is, lymphoscintigraphy, blue dye, and gamma-probe. Otolaryngologic melanoma and mucosal melanoma were excluded from this analysis. SNs were examined by serial sectioning and immunohistochemistry. All patients with metastatic SNs were recommended to undergo a radical selective lymph node dissection. RESULTS: The primary locations of the melanomas included the trunk (188), an upper limb (67), or a lower limb (147). Overall, 97 (24.1%) of the 402 SNs were metastatic. Interval SNs were observed in 18 patients, in all but 2 of whom classic SNs were also found. The location of the primary was truncal in 11 (61%) of the 18, upper limb in 5, and lower limb in 2. One patient with a dorsal melanoma had drainage exclusively in a cervicoscapular area that was shown on removal to contain not lymph node tissue but only a blue lymph channel without tumor cells. Apart from the interval SN, 13 patients had 1 classic SN area and 3 patients 2 classic SN areas. Of the 18 patients, 2 had at least 1 metastatic interval SN and 2 had a classic SN that was metastatic; overall, 4 (22.2%) of 18 patients were node-positive. CONCLUSION: We found that 2 of 18 interval SNs were metastatic: This study showed that preoperative lymphoscintigraphy must review all known lymphatic areas in order to exclude an interval SN.
Resumo:
Mucosal immunity to the enteric pathogen Shigella flexneri is mediated by secretory IgA (S-IgA) antibodies directed against the O-antigen (O-Ag) side chain of lipopolysaccharide. While secretory antibodies against the O-Ag are known to prevent bacterial invasion of the intestinal epithelium, the mechanisms by which this occurs are not fully understood. In this study, we report that the binding of a murine monoclonal IgA (IgAC5) to the O-Ag of S. flexneri serotype 5a suppresses activity of the type 3 secretion (T3S) system, which is necessary for S. flexneri to gain entry into intestinal epithelial cells. IgAC5's effects on the T3S were rapid (5 to 15 min) and were coincident with a partial reduction in the bacterial membrane potential and a decrease in intracellular ATP levels. Activity of the T3S system returned to normal levels 45 to 90 min following antibody treatment, demonstrating that IgAC5's effects were transient. Nonetheless, these data suggest a model in which the association of IgA with the O-Ag of S. flexneri partially de-energizes the T3S system and temporarily renders the bacterium incapable of invading intestinal epithelial cells. IMPORTANCE: Secretory IgA (S-IgA) serves as the first line of defense against enteric infections. However, despite its well-recognized role in mucosal immunity, relatively little is known at the molecular level about how this class of antibody functions to prevent pathogenic bacteria from penetrating the epithelial barrier. It is generally assumed that S-IgA functions primarily by "immune exclusion," a phenomenon in which the antibody binds to microbial surface antigens and thereby promotes bacterial agglutination, entrapment in mucus, and physical clearance from the gastrointestinal tract via peristalsis. The results of the present study suggest that in addition to serving as a physical barrier, S-IgA may have a direct impact on the ability of microbial pathogens to secrete virulence factors required for invasion of intestinal epithelial cells.
Resumo:
Les cancers du col utérin et de la vessie prennent tous deux leur origine dans les sites muqueux et peuvent évoluer lentement de lésions superficielles (lésions squameuses intra-épithéliales de bas à haut grade (HSIL) et carcinomes in situ du col utérin (CIS); ou tumeurs non musculo-invasives de la vessie (NMIBC)) à des cancers invasifs plus avancés. L'éthiologie de ces deux cancers est néanmoins très différente. Le cancer du col utérin est, à l'échelle mondiale, le deuxième cancer le plus mortel chez la femme. Ce cancer résulte de l'infection des cellules basales de l'épithélium stratifié du col utérin par le papillomavirus humain à haut risque (HPV). Les vaccins prophylactiques récemment développés contre le HPV (Gardasil® et Cervarix®) sont des moyens de prévention efficaces lorsqu'ils sont administrés chez les jeunes filles qui ne sont pas encore sexuellement actives; cependant ces vaccins ne permettent pas la régression des lésions déjà existantes. Malgré un développement actif, les vaccins thérapeutiques ciblant les oncogènes viraux E6/E7 n'ont montré qu'une faible efficacité clinique jusqu'à présent. Nous avons récemment démontré qu'une immunisation sous-cutanée (s.c.) était capable de faire régresser les petites tumeurs génitales chez 90% des souris, mais chez seulement 20% des souris présentant de plus grandes tumeurs. Dans cette étude, nous avons développé une nouvelle stratégie où la vaccination est associée à une application locale (intra-vaginale (IVAG)) d'agonistes de TLR. Celle-ci induit une augmentation des cellules T CD8 totales ainsi que T CD8 spécifiques au vaccin, mais pas des cellules T CD4. L'attraction sélective des cellules T CD8 est permise par leur expression des récepteurs de chemokines CCR5 et CXCR3 ainsi que par les ligants E-selectin. La vaccination, suivie de l'application IVAG de CpG, a conduit, chez 75% des souris, à la régression de grandes tumeurs établies. Le cancer de la vessie est le deuxième cancer urologique le plus fréquente. La plupart des tumeurs sont diagnostiquées comme NMIBC et sont restreintes à la muqueuse de la vessie, avec une forte propension à la récurrence et/ou progression après une résection locale. Afin de développer des vaccins contre les antigènes associés à la tumeur (TAA), il est nécessaire de trouver un moyen d'induire une réponse immunitaire CD8 spécifique dans la vessie. Pour ce faire, nous avons comparé différentes voies d'immunisation, en utilisant un vaccin composé d'adjuvants et de l'oncogène de HPV (E7) comme modèle. Les vaccinations s.c. et IVAG ont toutes deux induit un nombre similaire de cellules T CD8 spécifiques du vaccin dans la vessie, alors que l'immunisation intra-nasale fut inefficace. Les voies s.c. et IVAG ont induit des cellules T CD8 spécifiques du vaccin exprimant principalement aL-, a4- et le ligand d'E-selectin, suggérant que ces intégrines/sélectines sont responsables de la relocalisation des cellules T dans la vessie. Une unique immunisation avec E7 a permis une protection tumorale complète lors d'une étude prophylactique, indépendemment de la voie d'immunisation. Dans une étude thérapeutique, seules les vaccinations s.c. et IVAG ont efficacement conduit, chez environ 50% des souris, à la régression de tumeurs de la vessie établies, alors que l'immunisation intra-nasale n'a eu aucun effet. La régression de la tumeur est correlée avec l'infiltration dans la tumeur des cellules T CD8 spécifiques au vaccin et la diminution des cellules T régulatrices (Tregs). Afin d'augmenter l'efficacité de l'immunisation avec le TAA, nous avons testé une vaccination suivie de l'instillation d'agonistes de TLR3 et TLR9, ou d'un vaccin Salmonella Typhi (Ty21a). Cette stratégie a entraîné une augmentation des cellules T CD8 effectrices spécifiques du vaccin dans la vessie, bien qu'à différentes échelles. Ty21a étant l'immunostimulant le plus efficace, il mérite d'être étudié de manière plus approfondie dans le contexte du NMIBC. - Both cervical and bladder cancer originates in mucosal sites and can slowly progress from superficial lesions (low to high-grade squamous intra-epithelial lesions (HSIL) and carcinoma in situ (CIS) in the cervix; or non-muscle invasive tumors in the bladder (NMIBC)), to more advanced invasive cancers. The etiology of these two cancers is however very different. Cervical cancer is the second most common cause of cancer death in women worldwide. This cancer results from the infection of the basal cells of the stratified epithelium of the cervix by high-risk human papillomavirus (HPV). The recent availability of prophylactic vaccines (Gardasil® and Cervarix®) against HPV is an effective strategy to prevent this cancer when administered to young girls before sexual activity; however, these vaccines do not induce regression of established lesions. Despite active development, therapeutic vaccines targeting viral oncogenes E6/E7 had limited clinical efficacy to date. We recently reported that subcutaneous (s.c.) immunization was able to regress small genital tumors in 90% of the mice, but only 20% of mice had regression of larger tumors. Here, we developed a new strategy where vaccination is combined with the local (intravaginal (IVAG)) application of TLR agonists. This new strategy induced an increase of both total and vaccine-specific CD8 T cells in cervix-vagina, but not CD4 T cells. The selective attraction of CD8 T cells is mediated by the expression of CCR5 and CXCR3 chemokine receptors and E-selectin ligands in these cells. Vaccination followed by IVAG application of CpG resulted in tumor regression of large established tumors in 75% of the mice. Bladder cancer is the second most common urological malignancy. Most tumors are diagnosed as NMIBC, and are restricted to the mucosal bladder with a high propensity to recur and/or progress after local resection. Aiming to develop vaccines against tumor associated antigens (TAA) it is necessary to investigate how to target vaccine-specific T-cell immune responses to the bladder. Here we thus compared using an adjuvanted HPV oncogene (E7) vaccine, as a model, different routes of immunization. Both s.c. and IVAG vaccination induced similar number of vaccine-specific CD8 T-cells in the bladder, whereas intranasal (i.n.) immunization was ineffective. S.c. and IVAG routes induced predominantly aL-, a4- and E-selectin ligand-expressing vaccine-specific CD8 T-cells suggesting that these integrin/selectin are responsible for T-cell homing to the bladder. A single E7 immunization conferred full tumor protection in a prophylactic setting, irrespective of the immunization route. In a therapeutic setting, only ivag and s.c. vaccination efficiently regressed established bladder-tumors in ca. 50 % of mice, whereas i.n. immunization had no effect. Tumor regression correlated with vaccine- specific CD8 T cell tumor-infiltration and decrease of regulatory T cells (Tregs). To increase efficacy of TAA immunization, we tested vaccination followed by the local instillation of TLR3 or TLR9 agonist or of a Salmonella Typhi vaccine (Ty21a). This strategy resulted in an increase of vaccine-specific effector CD8 T cells in the bladder, although at different magnitudes. Ty21a being the most efficient, it deserves further investigation in the context of NMIBC. We further tested another strategy to improve therapies of NMIBC. In the murine MB49 bladder tumor model, we replaced the intravesical (ives) BCG therapy by another vaccine strain the Salmonella Ty21a. Ives Ty21a induced bladder tumor regression at least as efficiently as BCG. Ty21a bacteria did not infect nor survive neither in healthy nor in tumor-bearing bladders, suggesting its safety. Moreover, Ty21a induced a transient inflammatory response in healthy bladders, mainly through infiltration of neutrophils and macrophages that rapidly returned to basal levels, confirming its potential safety. The tumor regression was associated to a robust infiltration of immune cells, and secretion of cytokines in urines. Infection of murine tumor cell lines by Ty21a resulted in cell apoptosis. The infection of both murine and human urothelial cell lines induced secretion of in vitro inflammatory cytokines. Ty21a may be an attractive alternative for the ives treatment of NMIBC after transurethral resection and thus deserves more investigation.
Resumo:
Humans live in symbiosis with 10(14) commensal bacteria among which >99% resides in their gastrointestinal tract. The molecular bases pertaining to the interaction between mucosal secretory IgA (SIgA) and bacteria residing in the intestine are not known. Previous studies have demonstrated that commensals are naturally coated by SIgA in the gut lumen. Thus, understanding how natural SIgA interacts with commensal bacteria can provide new clues on its multiple functions at mucosal surfaces. Using fluorescently labeled, nonspecific SIgA or secretory component (SC), we visualized by confocal microscopy the interaction with various commensal bacteria, including Lactobacillus, Bifidobacteria, Escherichia coli, and Bacteroides strains. These experiments revealed that the interaction between SIgA and commensal bacteria involves Fab- and Fc-independent structural motifs, featuring SC as a crucial partner. Removal of glycans present on free SC or bound in SIgA resulted in a drastic drop in the interaction with Gram-positive bacteria, indicating the essential role of carbohydrates in the process. In contrast, poor binding of Gram-positive bacteria by control IgG was observed. The interaction with Gram-negative bacteria was preserved whatever the molecular form of protein partner used, suggesting the involvement of different binding motifs. Purified SIgA and SC from either mouse hybridoma cells or human colostrum exhibited identical patterns of recognition for Gram-positive bacteria, emphasizing conserved plasticity between species. Thus, sugar-mediated binding of commensals by SIgA highlights the currently underappreciated role of glycans in mediating the interaction between a highly diverse microbiota and the mucosal immune system.
Resumo:
In the gastro-intestinal tract,Peyers patches have been describedas a major inductive site for mucosalsecretory IgA (SIgA) responses directedagainst pathogens. The classicalview is that SIgAserves as the firstline of defense against microorganismsby agglutining potential invadersand faciliting their clearance byperistaltic and mucociliary movements,a mechanism called immuneexclusion. Our laboratory has shownthat SIgA is not only able to be"retrotransported" into Peyers patchesvia the associated M cells, but also todeliver sizeable cargos in the form ofSIgA-based immune complexes, resultingin the onset of non-inflammatorytype of responses. Such a novelfunction raises the question of thepossible role of mucosal SIgA in theinterplay with commensal bacteriaand the contribution of the antibody inbacterial homeostasis. To address thisquestion, Lactobacillus rhamnosus(LPR) was administered into a mouseligated loop comprising a Peyerspatch, in association or not with SIgA.The fate of fluorescently labelled bacteriawas followed by laser scanningconfocal microscopy at different incubationtimes. After 2 hours of incubationin the loop, LPR bacteria arefound more abundantly in thesubepithelial dome (SED) regionwhen they are coated with SIgA thanLPR administered alone despite theyare absent from neighboring villi.Herein, it is shown that this mechanismof entry involves M cells inPeyers pathes. After their sampling byM cells, bacteria are engulfed by thedendritic cells of the subjacent SEDregion. Interestingly, LPR bacteriaare found coated by the endogenousnatural SIgA present in mice intestinalsecretions, confirming the requirementof SIgA for this type of entry.The subsequent effect on the maturationof dendritic cells after interactionwith LPR was investigated in vitroin presence or not of SIgA by measuringthe expression of CD40, CD80and CD86 surface markers with flowcytometry analyses. Results show thatDCs respond in the same way in presenceof SIgA than with LPR bacteriaalone, indicating that SIgA does notmodulate the interaction betweenDCs and bacteria in this context. Thiswork gives new evidences about theinvolvement of SIgA in the mechanismby which the intestinal immunesystem permanently checks the contentof the intestine.
Resumo:
An increased frequency of nontyphoidal salmonellosis is well established in cancer patients, but it is unclear whether this represents increased susceptibility to exogenous infection or opportunistic, endogenous reactivation of asymptomatic carriage. In a retrospective study, a simple case definition was used to identify the probable presence of reactivation salmonellosis in five cancer patients between 1996 and 2002. Reactivation salmonellosis was defined as the development of nosocomial diarrhea >72 h after admission and following the administration of antineoplastic chemotherapy in an HIV-seronegative cancer patient who was asymptomatic on admission, in the absence of epidemiological evidence of a nosocomial outbreak. Primary salmonellosis associated with unrecognized nosocomial transmission or community acquisition and an unusually prolonged incubation period could not entirely be ruled out. During the same time period, another opportunistic infection, Pneumocystis pneumonia, was diagnosed in six cancer patients. Presumably, asymptomatic intestinal Salmonella colonization was converted to invasive infection by chemotherapy-associated intestinal mucosal damage and altered innate immune mechanisms. According to published guidelines, stool specimens from patients hospitalized for longer than 72 h should be rejected unless the patient is neutropenic or >or=65 years old with significant comorbidity. However, in this study neutropenia was present in only one patient, and four patients were <65 years old. Guidelines should thus be revised in order not to reject stool culture specimens from such patients. In cancer patients, nosocomial salmonellosis can occur as a chemotherapy-triggered opportunistic reactivation infection that may be similar in frequency to Pneumocystis pneumonia.
Resumo:
Thymic stromal lymphopoietin (TSLP) is a mucosal tissue-associated cytokine that has been widely studied in the context of T helper type 2 (Th2)-driven inflammatory disorders. Although TSLP is also produced upon viral infection in vitro, the role of TSLP in antiviral immunity is unknown. In this study we report a novel role for TSLP in promoting viral clearance and virus-specific CD8+ T-cell responses during influenza A infection. Comparing the immune responses of wild-type and TSLP receptor (TSLPR)-deficient mice, we show that TSLP was required for the expansion and activation of virus-specific effector CD8+ T cells in the lung, but not the lymph node. The mechanism involved TSLPR signaling on newly recruited CD11b+ inflammatory dendritic cells (DCs) that acted to enhance interleukin-15 production and expression of the costimulatory molecule CD70. Taken together, these data highlight the pleiotropic activities of TSLP and provide evidence for its beneficial role in antiviral immunity.
Resumo:
In adaptive immunity, Th17 lymphocytes produce the IL-17 and IL-22 cytokines that stimulate mucosal antimicrobial defenses and tissue repair. In this study, we observed that the TLR5 agonist flagellin induced swift and transient transcription of genes encoding IL-17 and IL-22 in lymphoid, gut, and lung tissues. This innate response also temporarily enhanced the expression of genes associated with the antimicrobial Th17 signature. The source of the Th17-related cytokines was identified as novel populations of CD3(neg)CD127(+) immune cells among which CD4-expressing cells resembling lymphoid tissue inducer cells. We also demonstrated that dendritic cells are essential for expression of Th17-related cytokines and so for stimulation of innate cells. These data define that TLR-induced activation of CD3(neg)CD127(+) cells and production of Th17-related cytokines may be crucial for the early defenses against pathogen invasion of host tissues.
Resumo:
BACKGROUND & AIMS: Clostridium difficile-associated disease (CDAD) is the leading cause of nosocomial diarrhea in the United States. C difficile toxins TcdA and TcdB breach the intestinal barrier and trigger mucosal inflammation and intestinal damage. The inflammasome is an intracellular danger sensor of the innate immune system. In the present study, we hypothesize that TcdA and TcdB trigger inflammasome-dependent interleukin (IL)-1beta production, which contributes to the pathogenesis of CDAD. METHODS: Macrophages exposed to TcdA and TcdB were assessed for IL-1beta production, an indication of inflammasome activation. Macrophages deficient in components of the inflammasome were also assessed. Truncated/mutated forms of TcdB were assessed for their ability to activate the inflammasome. The role of inflammasome signaling in vivo was assessed in ASC-deficient and IL-1 receptor antagonist-treated mice. RESULTS: TcdA and TcdB triggered inflammasome activation and IL-1beta secretion in macrophages and human mucosal biopsy specimens. Deletion of Nlrp3 decreased, whereas deletion of ASC completely abolished, toxin-induced IL-1beta release. TcdB-induced IL-1beta release required recognition of the full-length toxin but not its enzymatic function. In vivo, deletion of ASC significantly reduced toxin-induced inflammation and damage, an effect that was mimicked by pretreatment with the IL-1 receptor antagonist anakinra. CONCLUSIONS: TcdA and TcdB trigger IL-1beta release by activating an ASC-containing inflammasome, a response that contributes to toxin-induced inflammation and damage in vivo. Pretreating mice with the IL-1 receptor antagonist anakinra afforded the same level of protection that was observed in ASC-/- mice. These data suggest that targeting inflammasome or IL-1beta signaling may represent new therapeutic targets in the treatment of CDAD.
Resumo:
OBJECTIVE: An operative technique is described as a salvage treatment for severe subglottic and supraglottic laryngeal stenosis. In addition to expansion of the laryngeal framework with an anterior cartilage graft, as used in a classical laryngotracheal reconstruction, the scar tissue obliterating the airway lumen is excised and a mucosal graft is placed to reconstruct the inner lining of the airway. The graft is harvested from buccal mucosa. METHODS: The operative technique is outlined. Three cases, 2 paediatric and one adult, with complete or near complete laryngeal stenosis are presented where this operative technique was employed. In all patients several surgeries had been performed previously which were unsuccessful. RESULTS: In all 3 patients a patent airway was achieved with decannulation of the tracheostomy in the 2 paediatric patients. CONCLUSIONS: In patients with severe subglottic or supraglottic airway stenosis where other surgeries have failed, excision of endoluminal scar tissue and placement of a buccal mucosal graft, in addition to conventional laryngotracheal reconstruction, is a promising technique. In revision cases of subglottic stenosis cricotracheal resection might not be an option because of scarring from previous surgeries. This operation is an alternative, which allows an increase in the airway lumen by excising the scar tissue then re-lining the exposed internal lumen. The buccal mucosa reduces granulation formation and re-stenosis.