527 resultados para MODIS-NDVI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground surface temperature is one of the key parameters that determine the thermal regime of permafrost soils in arctic regions. Due to remoteness of most permafrost areas, monitoring of the land surface temperature (LST) through remote sensing is desirable. However, suitable satellite platforms such as MODIS provide spatial resolutions, that cannot resolve the considerable small-scale heterogeneity of the surface conditions characteristic for many permafrost areas. This study investigates the spatial variability of summer surface temperatures of high-arctic tundra on Svalbard, Norway. A thermal imaging system mounted on a mast facilitates continuous monitoring of approximately 100 x 100 m of tundra with a wide variability of different surface covers and soil moisture conditions over the entire summer season from the snow melt until fall. The net radiation is found to be a control parameter for the differences in surface temperature between wet and dry areas. Under clear-sky conditions in July, the differences in surface temperature between wet and dry areas reach up to 10K. The spatial differences reduce strongly in weekly averages of the surface temperature, which are relevant for the soil temperature evolution of deeper layers. Nevertheless, a considerable variability remains, with maximum differences between wet and dry areas of 3 to 4K. Furthermore, the pattern of snow patches and snow-free areas during snow melt in July causes even greater differences of more than 10K in the weekly averages. Towards the end of the summer season, the differences in surface temperature gradually diminish. Due to the pronounced spatial variability in July, the accumulated degree-day totals of the snow-free period can differ by more than 60% throughout the study area. The terrestrial observations from the thermal imaging system are compared to measurements of the land surface temperature from the MODIS sensor. During periods with frequent clear-sky conditions and thus a high density of satellite data, weekly averages calculated from the thermal imaging system and from MODIS LST agree within less than 2K. Larger deviations occur when prolonged cloudy periods prevent satellite measurements. Futhermore, the employed MODIS L2 LST data set contains a number of strongly biased measurements, which suggest an admixing of cloud top temperatures. We conclude that a reliable gap filling procedure to moderate the impact of prolonged cloudy periods would be of high value for a future LST-based permafrost monitoring scheme. The occurrence of sustained subpixel variability of the summer surface temperature is a complicating factor, whose impact needs to be assessed further in conjunction with other spatially variable parameters such as the snow cover and soil properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2005, the International Ocean Colour Coordinating Group (IOCCG) convened a working group to examine the state of the art in ocean colour data merging, which showed that the research techniques had matured sufficiently for creating long multi-sensor datasets (IOCCG, 2007). As a result, ESA initiated and funded the DUE GlobColour project (http://www.globcolour.info/) to develop a satellite based ocean colour data set to support global carbon-cycle research. It aims to satisfy the scientific requirement for a long (10+ year) time-series of consistently calibrated global ocean colour information with the best possible spatial coverage. This has been achieved by merging data from the three most capable sensors: SeaWiFS on GeoEye's Orbview-2 mission, MODIS on NASA's Aqua mission and MERIS on ESA's ENVISAT mission. In setting up the GlobColour project, three user organisations were invited to help. Their roles are to specify the detailed user requirements, act as a channel to the broader end user community and to provide feedback and assessment of the results. The International Ocean Carbon Coordination Project (IOCCP) based at UNESCO in Paris provides direct access to the carbon cycle modelling community's requirements and to the modellers themselves who will use the final products. The UK Met Office's National Centre for Ocean Forecasting (NCOF) in Exeter, UK, provides an understanding of the requirements of oceanography users, and the IOCCG bring their understanding of the global user needs and valuable advice on best practice within the ocean colour science community. The three year project kicked-off in November 2005 under the leadership of ACRI-ST (France). The first year was a feasibility demonstration phase that was successfully concluded at a user consultation workshop organised by the Laboratoire d'Océanographie de Villefranche, France, in December 2006. Error statistics and inter-sensor biases were quantified by comparison with insitu measurements from moored optical buoys and ship based campaigns, and used as an input to the merging. The second year was dedicated to the production of the time series. In total, more than 25 Tb of input (level 2) data have been ingested and 14 Tb of intermediate and output products created, with 4 Tb of data distributed to the user community. Quality control (QC) is provided through the Diagnostic Data Sets (DDS), which are extracted sub-areas covering locations of in-situ data collection or interesting oceanographic phenomena. This Full Product Set (FPS) covers global daily merged ocean colour products in the time period 1997-2006 and is also freely available for use by the worldwide science community at http://www.globcolour.info/data_access_full_prod_set.html. The GlobColour service distributes global daily, 8-day and monthly data sets at 4.6 km resolution for, chlorophyll-a concentration, normalised water-leaving radiances (412, 443, 490, 510, 531, 555 and 620 nm, 670, 681 and 709 nm), diffuse attenuation coefficient, coloured dissolved and detrital organic materials, total suspended matter or particulate backscattering coefficient, turbidity index, cloud fraction and quality indicators. Error statistics from the initial sensor characterisation are used as an input to the merging methods and propagate through the merging process to provide error estimates for the output merged products. These error estimates are a key component of GlobColour as they are invaluable to the users; particularly the modellers who need them in order to assimilate the ocean colour data into ocean simulations. An intensive phase of validation has been undertaken to assess the quality of the data set. In addition, inter-comparisons between the different merged datasets will help in further refining the techniques used. Both the final products and the quality assessment were presented at a second user consultation in Oslo on 20-22 November 2007 organised by the Norwegian Institute for Water Research (NIVA); presentations are available on the GlobColour WWW site. On request of the ESA Technical Officer for the GlobColour project, the FPS data set was mirrored in the PANGAEA data library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of phytoplankton assemblages to hydrographical forcing across the southern Brazilian shelf was studied based on data collected during wintertime (June/2012), complemented with MODIS-Aqua satellite imagery. The in situ data set was comprised by water column structure properties (derived from CTD casts), dissolved inorganic nutrients (ammonium, nitrite, nitrate, phosphate and silicate) and phytoplankton biomass [chlorophyll a (Chl a) concentration] and composition. Phytoplankton assemblages were assessed by both microscopy and HPLC-CHEMTAX approaches. A canonical correspondence analysis associating physical, chemical and phytoplankton composition data at surface evinced a tight coupling between the phytoplankton community and hydrographic conditions, with remarkable environmental gradients across three different domains: the pelagic, outer shelf Tropical Water (TW); the mid shelf domain under influence of Subtropical Shelf Water (STSW); and the inner shelf domain mainly under influence of riverine outflow of the Plata River Plume Water (PPW). Results showed that intrusion of low salinity and nutrient-rich PPW stimulated the phytoplankton growth and diversity within the inner shelf region, with enhanced Chl a levels (>1.3 mg/m**3) and a great abundance of diatoms, ciliates, dinoflagellates, raphidophyceans and cryptophytes. Conversely, other diatoms (e.g. Rhizosolenia clevei), tiny species of prochlorophytes and cyanobacteria and a noticeable contribution of dinoflagellates and other flagellates associated with lower Chl a levels (<0.93 mg/m**3), characterized the TW domain, where low nutrient concentrations and deep upper mixed layer were found. The transitional mid shelf domain showed intermediate levels of both nutrients and Chl a (ranging 1.06-1.59 mg/m**3), and phytoplankton was mainly composed by dinoflagellates, such as Dinophysis spp., and gymnodinioids. Results have shown considerable phytoplankton diversity in winter at that section of the southwestern Atlantic Ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Remote sensing instruments are key players to map land surface temperature (LST) at large temporal and spatial scales. In this paper, we present how we combine passive microwave and thermal infrared data to estimate LST during summer snow-free periods over northern high latitudes. The methodology is based on the SSM/I-SSMIS 37 GHz measurements at both vertical and horizontal polarizations on a 25 km × 25 km grid size. LST is retrieved from brightness temperatures introducing an empirical linear relationship between emissivities at both polarizations as described in Royer and Poirier (2010). This relationship is calibrated at pixel scale, using cloud-free independent LST data from MODIS instruments. The SSM/I-SSMIS and MODIS data are synchronized by fitting a diurnal cycle model built on skin temperature reanalysis provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The resulting temperature dataset is provided at 25 km scale and at an hourly time step during the ten-year analysis period (2000-2011). This new product was locally evaluated at five experimental sites of the EU-PAGE21 project against air temperature measurements and meteorological model reanalysis, and compared to the MODIS LST product at both local and circumpolar scale. The results giving a mean RMSE of the order of 2.2 K demonstrate the usefulness of the microwave product, which is unaffected by clouds as opposed to thermal infrared products and offers a better resolution compared to model reanalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new methodology for object based 2-D data fu- sion, with a multiscale character. This methodology is intended to be use in agriculture, specifically in the characterization of the water status of different crops, so as to have an appropriate water management at a farm-holding scale. As a first approach to its evaluation, vegetation cover vigor data has been integrated with texture data. For this purpose, NDVI maps have been calculated using a multispectral image and Lacunarity maps from the panchromatic image. Preliminary results show this methodology is viable in the integration and management of large volumes of data, which characterize the behavior of agricultural covers at farm-holding scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Sistema de Seguros Agrarios con el Seguro de cobertura de los daños por sequía en los pastos aprovechados por el ganado en régimen extensivo (línea de seguro 133) aplica la teledetección mediante un índice de vegetación (NDVI), con el fin de solucionar los problemas de peritación que surgen cuando se tiene que determinar la cantidad y calidad del pasto afectado por la sequía. Por ello el seguro de cobertura de los daños por sequía en pastos es el principal instrumento para hacer frente al gasto que supone la necesidad de suplemento de alimentación del ganado reproductor debido a la sequía. En las comarcas de Vitigudino, Trujillo y Valle de los Pedroches (España) se comparó la evolución del seguro de sequía en pastos desde 2006 a 2010 con un modelo matemático de crecimiento del pasto en función de las variables ecofisiológicas y ambientales. Sumadas las decenas de sequía extrema y sequía leve, el modelo matemático contabilizó un número mayor de decenas que las proporcionadas por Agroseguro. La recomendación es comparar las curvas de crecimiento del pasto con las curvas de evolución del NDVI, para ajustar ambos modelos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La presente tesis doctoral tiene por objeto el estudio y análisis de técnicas y modelos de obtención de parámetros biofísicos e indicadores ambientales, de manera automatizada a partir de imágenes procedentes de satélite de alta resolución temporal. En primer lugar se revisan los diferentes programas espaciales de observación del territorio, con especial atención a los que proporcionan dicha resolución. También se han revisado las metodologías y procesos que permiten la obtención de diferentes parámetros cuantitativos y documentos cualitativos, relacionados con diversos aspectos de las cubiertas terrestres, atendiendo a su adaptabilidad a las particularidades de los datos. En segundo lugar se propone un modelo de obtención de parámetros ambientales, que integra información proveniente de sensores espaciales y de otras fuentes auxiliares utilizando, en cierta medida, las metodologías presentadas en apartados anteriores y optimizando algunas de las referidas o proponiendo otras nuevas, de manera que se permita dicha obtención de manera eficiente, a partir de los datos disponibles y de forma sistemática. Tras esta revisión de metodologías y propuesta del modelo, se ha procedido a la realización de experimentos, con la finalidad de comprobar su comportamiento en diferentes casos prácticos, depurar los flujos de datos y procesos, así como establecer las situaciones que pueden afectar a los resultados. De todo ello se deducirá la evaluación del referido modelo. Los sensores considerados en este trabajo han sido MODIS, de alta resolución temporal y Thematic Mapper (TM), de media resolución espacial, por tratarse de instrumentos de referencia en la realización de estudios ambientales. También por la duración de sus correspondientes misiones de registro de datos, lo que permite realizar estudios de evolución temporal de ciertos parámetros biofísicos, durante amplios periodos de tiempo. Así mismo. es de destacar que la continuidad de los correspondientes programas parece estar asegurada. Entre los experimentos realizados, se ha ensayado una metodología para la integración de datos procedentes de ambos sensores. También se ha analizado un método de interpolación temporal que permite obtener imágenes sintéticas con la resolución espacial de TM (30 m) y la temporal de MODIS (1 día), ampliando el rango de aplicación de este último sensor. Asimismo, se han analizado algunos de los factores que afectan a los datos registrados, tal como la geometría de la toma de los mismos y los episodios de precipitación, los cuales alteran los resultados obtenidos. Por otro lado, se ha comprobado la validez del modelo propuesto en el estudio de fenómenos ambientales dinámicos, en concreto la contaminación orgánica de aguas embalsadas. Finalmente, se ha demostrado un buen comportamiento del modelo en todos los casos ensayados, así como su flexibilidad, lo que le permite adaptarse a nuevos orígenes de datos, o nuevas metodologías de cálculo. Abstract This thesis aims to the study and analysis of techniques and models, in order to obtain biophysical parameters and environmental indicators in an automated way, using high temporal resolution satellite data. Firstly we have reviewed the main Earth Observation Programs, paying attention to those that provide high temporal resolution. Also have reviewed the methodologies and process flow diagrams in order to obtain quantitative parameters and qualitative documents, relating to various aspects of land cover, according to their adaptability to the peculiarities of the data. In the next stage, a model which allows obtaining environmental parameters, has been proposed. This structure integrates information from space sensors and ancillary data sources, using the methodologies presented in previous sections that permits the parameters calculation in an efficient and automated way. After this review of methodologies and the proposal of the model, we proceeded to carry out experiments, in order to check the behavior of the structure in real situations. From this, we derive the accuracy of the model. The sensors used in this work have been MODIS, which is a high temporal resolution sensor, and Thematic Mapper (TM), which is a medium spatial resolution instrument. This choice was motivated because they are reference sensors in environmental studies, as well as for the duration of their corresponding missions of data logging, and whose continuity seems assured. Among the experiments, we tested a methodology that allows the integration of data from cited sensors, we discussed a proposal for a temporal interpolation method for obtaining synthetic images with spatial resolution of TM (30 m) and temporal of MODIS (1 day), extending the application range of this one. Furthermore, we have analyzed some of the factors that affect the recorded data, such as the relative position of the satellite with the ground point, and the rainfall events, which alter the obtained results. On the other hand, we have proven the validity of the proposed model in the study of the organic contamination in inland water bodies. Finally, we have demonstrated a good performance of the proposed model in all cases tested, as well as its flexibility and adaptability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Las aplicaciones de la teledetección al seguimiento de lo que ocurre en la superficie terrestre se han ido multiplicando y afinando con el lanzamiento de nuevos sensores por parte de las diferentes agencias espaciales. La necesidad de tener información actualizada cada poco tiempo y espacialmente homogénea, ha provocado el desarrollo de nuevos programas como el Earth Observing System (EOS) de la National Aeronautics and Space Administration (NASA). Uno de los sensores que incorpora el buque insignia de ese programa, el satélite TERRA, es el Multi-angle Imaging SpectroRadiometer (MISR), diseñado para capturar información multiangular de la superficie terrestre. Ya desde los años 1970, se conocía que la reflectancia de las diversas ocupaciones y usos del suelo variaba en función del ángulo de observación y de iluminación, es decir, que eran anisotrópicas. Tal variación estaba además relacionada con la estructura tridimensional de tales ocupaciones, por lo que se podía aprovechar tal relación para obtener información de esa estructura, más allá de la que pudiera proporcionar la información meramente espectral. El sensor MISR incorpora 9 cámaras a diferentes ángulos para capturar 9 imágenes casi simultáneas del mismo punto, lo que permite estimar con relativa fiabilidad la respuesta anisotrópica de la superficie terrestre. Varios trabajos han demostrado que se pueden estimar variables relacionadas con la estructura de la vegetación con la información que proporciona MISR. En esta Tesis se ha realizado una primera aplicación a la Península Ibérica, para comprobar su utilidad a la hora de estimar variables de interés forestal. En un primer paso se ha analizado la variabilidad temporal que se produce en los datos, debido a los cambios en la geometría de captación, es decir, debido a la posición relativa de sensores y fuente de iluminación, que en este caso es el Sol. Se ha comprobado cómo la anisotropía es mayor desde finales de otoño hasta principios de primavera debido a que la posición del Sol es más cercana al plano de los sensores. También se ha comprobado que los valores máximo y mínimo se van desplazando temporalmente entre el centro y el extremo angular. En la caracterización multiangular de ocupaciones del suelo de CORINE Land Cover que se ha realizado, se puede observar cómo la forma predominante en las imágenes con el Sol más alto es convexa con un máximo en la cámara más cercana a la fuente de iluminación. Sin embargo, cuando el Sol se encuentra mucho más bajo, ese máximo es muy externo. Por otra parte, los datos obtenidos en verano son mucho más variables para cada ocupación que los de noviembre, posiblemente debido al aumento proporcional de las zonas en sombra. Para comprobar si la información multiangular tiene algún efecto en la obtención de imágenes clasificadas según ocupación y usos del suelo, se han realizado una serie de clasificaciones variando la información utilizada, desde sólo multiespectral, a multiangular y multiespectral. Los resultados muestran que, mientras para las clasificaciones más genéricas la información multiangular proporciona los peores resultados, a medida que se amplían el número de clases a obtener tal información mejora a lo obtenido únicamente con información multiespectral. Por otra parte, se ha realizado una estimación de variables cuantitativas como la fracción de cabida cubierta (Fcc) y la altura de la vegetación a partir de información proporcionada por MISR a diferentes resoluciones. En el valle de Alcudia (Ciudad Real) se ha estimado la fracción de cabida cubierta del arbolado para un píxel de 275 m utilizando redes neuronales. Los resultados muestran que utilizar información multiespectral y multiangular puede mejorar casi un 20% las estimaciones realizadas sólo con datos multiespectrales. Además, las relaciones obtenidas llegan al 0,7 de R con errores inferiores a un 10% en Fcc, siendo éstos mucho mejores que los obtenidos con el producto elaborado a partir de datos multiespectrales del sensor Moderate Resolution Imaging Spectroradiometer (MODIS), también a bordo de Terra, para la misma variable. Por último, se ha estimado la fracción de cabida cubierta y la altura efectiva de la vegetación para 700.000 ha de la provincia de Murcia, con una resolución de 1.100 m. Los resultados muestran la relación existente entre los datos espectrales y los multiangulares, obteniéndose coeficientes de Spearman del orden de 0,8 en el caso de la fracción de cabida cubierta de la vegetación, y de 0,4 en el caso de la altura efectiva. Las estimaciones de ambas variables con redes neuronales y diversas combinaciones de datos, arrojan resultados con R superiores a 0,85 para el caso del grado de cubierta vegetal, y 0,6 para la altura efectiva. Los parámetros multiangulares proporcionados en los productos elaborados con MISR a 1.100 m, no obtienen buenos resultados por sí mismos pero producen cierta mejora al incorporarlos a la información espectral. Los errores cuadráticos medios obtenidos son inferiores a 0,016 para la Fcc de la vegetación en tanto por uno, y 0,7 m para la altura efectiva de la misma. Regresiones geográficamente ponderadas muestran además que localmente se pueden obtener mejores resultados aún mejores, especialmente cuando hay una mayor variabilidad espacial de las variables estimadas. En resumen, la utilización de los datos proporcionados por MISR ofrece una prometedora vía de mejora de resultados en la media-baja resolución, tanto para la clasificación de imágenes como para la obtención de variables cuantitativas de la estructura de la vegetación. ABSTRACT Applications of remote sensing for monitoring what is happening on the land surface have been multiplied and refined with the launch of new sensors by different Space Agencies. The need of having up to date and spatially homogeneous data, has led to the development of new programs such as the Earth Observing System (EOS) of the National Aeronautics and Space Administration (NASA). One of the sensors incorporating the flagship of that program, the TERRA satellite, is Multi-angle Imaging Spectroradiometer (MISR), designed to capture the multi-angle information of the Earth's surface. Since the 1970s, it was known that the reflectance of various land covers and land uses varied depending on the viewing and ilumination angles, so they are anisotropic. Such variation was also related to the three dimensional structure of such covers, so that one could take advantage of such a relationship to obtain information from that structure, beyond which spectral information could provide. The MISR sensor incorporates 9 cameras at different angles to capture 9 almost simultaneous images of the same point, allowing relatively reliable estimates of the anisotropic response of the Earth's surface. Several studies have shown that we can estimate variables related to the vegetation structure with the information provided by this sensor, so this thesis has made an initial application to the Iberian Peninsula, to check their usefulness in estimating forest variables of interest. In a first step we analyzed the temporal variability that occurs in the data, due to the changes in the acquisition geometry, i.e. the relative position of sensor and light source, which in this case is the Sun. It has been found that the anisotropy is greater from late fall through early spring due to the Sun's position closer to the plane of the sensors. It was also found that the maximum and minimum values are displaced temporarily between the center and the ends. In characterizing CORINE Land Covers that has been done, one could see how the predominant form in the images with the highest sun is convex with a maximum in the camera closer to the light source. However, when the sun is much lower, the maximum is external. Moreover, the data obtained for each land cover are much more variable in summer that in November, possibly due to the proportional increase in shadow areas. To check whether the information has any effect on multi-angle imaging classification of land cover and land use, a series of classifications have been produced changing the data used, from only multispectrally, to multi-angle and multispectral. The results show that while for the most generic classifications multi-angle information is the worst, as there are extended the number of classes to obtain such information it improves the results. On the other hand, an estimate was made of quantitative variables such as canopy cover and vegetation height using information provided by MISR at different resolutions. In the valley of Alcudia (Ciudad Real), we estimated the canopy cover of trees for a pixel of 275 m by using neural networks. The results showed that using multispectral and multiangle information can improve by almost 20% the estimates that only used multispectral data. Furthermore, the relationships obtained reached an R coefficient of 0.7 with errors below 10% in canopy cover, which is much better result than the one obtained using data from the Moderate Resolution Imaging Spectroradiometer (MODIS), also onboard Terra, for the same variable. Finally we estimated the canopy cover and the effective height of the vegetation for 700,000 hectares in the province of Murcia, with a spatial resolution of 1,100 m. The results show a relationship between the spectral and the multi-angle data, and provide estimates of the canopy cover with a Spearman’s coefficient of 0.8 in the case of the vegetation canopy cover, and 0.4 in the case of the effective height. The estimates of both variables using neural networks and various combinations of data, yield results with an R coefficient greater than 0.85 for the case of the canopy cover, and 0.6 for the effective height. Multi-angle parameters provided in the products made from MISR at 1,100 m pixel size, did not produce good results from themselves but improved the results when included to the spectral information. The mean square errors were less than 0.016 for the canopy cover, and 0.7 m for the effective height. Geographically weighted regressions also showed that locally we can have even better results, especially when there is high spatial variability of estimated variables. In summary, the use of the data provided by MISR offers a promising way of improving remote sensing performance in the low-medium spatial resolution, both for image classification and for the estimation of quantitative variables of the vegetation structure.