981 resultados para MICRO-CT SCAN
Resumo:
Introduction. Investigations into the shortcomings of current intracavitary brachytherapy (ICBT) technology has lead us to design an Anatomically Adaptive Applicator (A3). The goal of this work was to design and characterize the imaging and dosimetric capabilities of this device. The A3 design incorporates a single shield that can both rotate and translate within the colpostat. We hypothesized that this feature, coupled with specific A3 component construction materials and imaging techniques, would facilitate artifact-free CT and MR image acquisition. In addition, by shaping the delivered dose distribution via the A3 movable shield, dose delivered to the rectum will be less compared to equivalent treatments utilizing current state-of-the-art ICBT applicators. ^ Method and materials. A method was developed to facilitate an artifact-free CT imaging protocol that used a "step-and-shoot" technique: pausing the scanner midway through the scan and moving the A 3 shield out of the path of the beam. The A3 CT imaging capabilities were demonstrated acquiring images of a phantom that positioned the A3 and FW applicators in a clinically-applicable geometry. Artifact-free MRI imaging was achieved by utilizing MRI-compatible ovoid components and pulse-sequences that minimize susceptibility artifacts. Artifacts were qualitatively compared, in a clinical setup. For the dosimetric study, Monte-Carlo (MC) models of the A3 and FW (shielded and unshielded) applicators were validated. These models were incorporated into a MC model of one cervical cancer patient ICBT insertion, using 192Ir (mHDR v2 source). The A3 shield's rotation and translation was adjusted for each dwell position to minimize dose to the rectum. Superposition of dose to rectum for all A3 dwell sources (4 per ovoid) was applied to obtain a comparison of equivalent FW treatments. Rectal dose-volume histograms (absolute and HDR/PDR biologically effective dose (BED)) and BED to 2 cc (BED2cc ) were determined for all applicators and compared. ^ Results. Using a "step-and-shoot" CT scanning method and MR compliant materials and optimized pulse-sequences, images of the A 3 were nearly artifact-free for both modalities. The A3 reduced BED2cc by 18.5% and 7.2% for a PDR treatment and 22.4% and 8.7% for a HDR treatment compared to treatments delivered using an uFW and sFW applicator, respectively. ^ Conclusions. The novel design of the A3 facilitated nearly artifact-free image quality for both CT and MR clinical imaging protocols. The design also facilitated a reduction in BED to the rectum compared to equivalent ICBT treatments delivered using current, state-of-the-art applicators. ^
Resumo:
O sistema microPET/CT é um importante equipamento utilizado nas pesquisas de imagem diagnóstica em pequenos animais. O radiofármaco mais usado nesta tecnologia é o fluordeoxiglicose marcado com flúor-18. Este estudo tem como objetivo efetuar o controle radiológico no laboratório de pesquisa microPET/CT do Centro de Radiofarmácia do IPEN-CNEN/SP, de forma a satisfazer tanto as normas nacionais como as recomendações internacionais. O laboratório está classificado pela equipe de radioproteção da instalação como área supervisionada, nas quais embora não seja obrigatória a adoção de medidas específicas de proteção e segurança, devem ser submetidas reavaliações regulares das condições do ambiente de trabalho. Visando assegurar a proteção radiológica dos trabalhadores diretamente envolvidos no manuseio do equipamento, realizou-se o monitoramento do local de trabalho e a avaliação do controle de dose individual. Inicialmente foi feito o monitoramento pré-operacional, isto é, o levantamento radiométrico no laboratório. Além disso, mediu-se nível de radiação externa nas instalações do laboratório e suas adjacências, por meio da colocação de nove dosímetros termoluminescentes (TL) de CaSO4:Dy, em locais previamente selecionados. Os indivíduos ocupacionalmente expostos foram avaliados mensalmente por meio do uso de dosímetros TL posicionados no tórax e por medidas de corpo inteiro, tomadas a cada seis meses. O período do estudo foi de dois anos, com início em abril de 2014. Para o controle do microPET/CT realizou-se testes de desempenho de acordo com o protocolo padrão do equipamento e em conformidade com a norma desenvolvida pela força tarefa para estudos com PET em animais Animal PET Standard Task Force. O presente estudo permitiu demonstrar que os níveis de radiação das áreas (estimativas de dose ambiente e dose efetiva), assim como a blindagem do equipamento estão adequados de acordo com os limites da exposição ocupacional. Ressalta-se a importância de se seguir rigorosamente os princípios de radioproteção, já que se trata de pesquisas com fontes radioativas não seladas.
Resumo:
Background: Plasma triglyceride concentration is known to be a significant risk factor for cardiovascular disease (CVD). Previous studies have found that the level of triglycerides is strongly influenced by genetic factors. Methods: To identify quantitative trait loci influencing triglycerides, we conducted a genome-wide linkage scan on data from 485 Australian adult dizygotic twin pairs. Prior to linkage analysis, triglyceride values were adjusted for the effects of covariates including age, sex, time since last meal, time of blood collection (CT) and time to plasma separation. Results: The heritability estimate for ln(triglyceride) adjusted for all above fixed effects was 0.49. The highest multipoint LOD score observed was 2.94 (genome-wide p=0.049) on chromosome 7 (at 65cM). This 7p region contains several candidate genes. Two other regions with suggestive multipoint LOD scores were also identified on chromosome 4 (LOD score=2.26 at 62cM) and chromosome X (LOD score=2.01 at 81cM). Conclusions: The linkage peaks found represent newly identified regions for more detailed study, in particular the significant linkage observed on chromosome 7p13. \ (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This thesis describes the design and development of an autonomous micro-drilling system capable of accurately controlling the penetration of complaint tissues and its application to the drilling of the cochleostomy; a key stage in the cochlea implant procedure. The drilling of the cochleostomy is a precision micro-surgical task in which the control of the burr penetration through the outer bone tissue of the cochlea is vital to prevent damage to the structures within and requires a high degree of skill to perform successfully. The micro-drilling system demonstrates that the penetration of the cochlea can be achieved consistently and accurately. Breakthrough can be detected and controlled to within 20µm of the distal surface and the hole completed without perforation of the underlying endosteal membrane, leaving the membranous cochlea intact. This device is the first autonomous surgical tool successfully deployed in the operating theatre. The system is unique due to the way in which it uses real-time data from the cutting tool to derive the state of the tool-tissue interaction. Being a smart tool it uses this state information to actively control the way in which the drilling process progresses. This sensor guided strategy enables the tool to self-reference to the deforming tissue and navigate without the need for pre-operative scan data. It is this capability that enables the system to operate in circumstances where the tissue properties and boundary conditions are unknown, without the need to restrain the patient.
Resumo:
Due to the increasing demand for high power and reliable miniaturized energy storage devices, the development of micro-supercapacitors or electrochemical micro-capacitors have attracted much attention in recent years. This dissertation investigates several strategies to develop on-chip micro-supercapacitors with high power and energy density. Micro-supercapacitors based on interdigitated carbon micro-electrode arrays are fabricated through carbon microelectromechanical systems (C-MEMS) technique which is based on carbonization of patterned photoresist. To improve the capacitive behavior, electrochemical activation is performed on carbon micro-electrode arrays. The developed micro-supercapacitors show specific capacitances as high as 75 mFcm-2 at a scan rate of 5 mVs -1 after electrochemical activation for 30 minutes. The capacitance loss is less than 13% after 1000 cyclic voltammetry (CV) cycles. These results indicate that electrochemically activated C-MEMS micro-electrode arrays are promising candidates for on-chip electrochemical micro-capacitor applications. The energy density of micro-supercapacitors was further improved by conformal coating of polypyrrole (PPy) on C-MEMS structures. In these types of micro-devices the three dimensional (3D) carbon microstructures serve as current collectors for high energy density PPy electrodes. The electrochemical characterizations of these micro-supercapacitors show that they can deliver a specific capacitance of about 162.07 mFcm-2 and a specific power of 1.62mWcm -2 at a 20 mVs-1 scan rate. Addressing the need for high power micro-supercapacitors, the application of graphene as electrode materials for micro-supercapacitor was also investigated. The present study suggests a novel method to fabricate graphene-based micro-supercapacitors with thin film or in-plane interdigital electrodes. The fabricated micro-supercapacitors show exceptional frequency response and power handling performance and could effectively charge and discharge at rates as high as 50 Vs-1. CV measurements show that the specific capacitance of the micro-supercapacitor based on reduced graphene oxide and carbon nanotube composites is 6.1 mFcm -2 at scan rate of 0.01Vs-1. At a very high scan rate of 50 Vs-1, a specific capacitance of 2.8 mFcm-2 (stack capacitance of 3.1 Fcm-3) is recorded. This unprecedented performance can potentially broaden the future applications of micro-supercapacitors.
Resumo:
The quality of the image of 18F-FDG PET/CT scans in overweight patients is commonly degraded. This study evaluates, retrospectively, the relation between SNR, weight and dose injected in 65 patients, with a range of weights from 35 to 120 kg, with scans performed using the Biograph mCT using a standardized protocol in the Nuclear Medicine Department at Radboud University Medical Centre in Nijmegen, The Netherlands. Five ROI’s were made in the liver, assumed to be an organ of homogenous metabolism, at the same location, in five consecutive slices of the PET/CT scans to obtain the mean uptake (signal) values and its standard deviation (noise). The ratio of both gave us the Signal-to- Noise Ratio in the liver. With the help of a spreadsheet, weight, height, SNR and Body Mass Index were calculated and graphs were designed in order to obtain the relation between these factors. The graphs showed that SNR decreases as the body weight and/or BMI increased and also showed that, even though the dose injected increased, the SNR also decreased. This is due to the fact that heavier patients receive higher dose and, as reported, heavier patients have less SNR. These findings suggest that the quality of the images, measured by SNR, that were acquired in heavier patients are worst than thinner patients, even though higher FDG doses are given. With all this taken in consideration, it was necessary to make a new formula to calculate a new dose to give to patients and having a good and constant SNR in every patient. Through mathematic calculations, it was possible to reach to two new equations (power and exponential), which would lead to a SNR from a scan made with a specific reference weight (86 kg was the considered one) which was independent of body mass. The study implies that with these new formulas, patients heavier than the reference weight will receive higher doses and lighter patients will receive less doses. With the median being 86 kg, the new dose and new SNR was calculated and concluded that the quality of the image remains almost constant as the weight increases and the quantity of the necessary FDG remains almost the same, without increasing the costs for the total amount of FDG used in all these patients.
Resumo:
Objective The objective of this study was to develop a clinical nomogram to predict gallium-68 prostate-specific membrane antigen positron emission tomography/computed tomography (68Ga-PSMA-11-PET/CT) positivity in different clinical settings of PSA failure. Materials and methods Seven hundred three (n = 703) prostate cancer (PCa) patients with confirmed PSA failure after radical therapy were enrolled. Patients were stratified according to different clinical settings (first-time biochemical recurrence [BCR]: group 1; BCR after salvage therapy: group 2; biochemical persistence after radical prostatectomy [BCP]: group 3; advanced stage PCa before second-line systemic therapies: group 4). First, we assessed 68Ga-PSMA-11-PET/CT positivity rate. Second, multivariable logistic regression analyses were used to determine predictors of positive scan. Third, regression-based coefficients were used to develop a nomogram predicting positive 68Ga-PSMA-11-PET/CT result and 200 bootstrap resamples were used for internal validation. Fourth, receiver operating characteristic (ROC) analysis was used to identify the most informative nomogram’s derived cut-off. Decision curve analysis (DCA) was implemented to quantify nomogram’s clinical benefit. Results 68Ga-PSMA-11-PET/CT overall positivity rate was 51.2%, while it was 40.3% in group 1, 54% in group 2, 60.5% in group 3, and 86.9% in group 4 (p < 0.001). At multivariable analyses, ISUP grade, PSA, PSA doubling time, and clinical setting were independent predictors of a positive scan (all p ≤ 0.04). A nomogram based on covariates included in the multivariate model demonstrated a bootstrap-corrected accuracy of 82%. The nomogram-derived best cut-off value was 40%. In DCA, the nomogram revealed clinical net benefit of > 10%. Conclusions This novel nomogram proved its good accuracy in predicting a positive scan, with values ≥ 40% providing the most informative cut-off in counselling patients to 68Ga-PSMA-11-PET/CT. This tool might be important as a guide to clinicians in the best use of PSMA-based PET imaging.
Resumo:
Introduction Only a proportion of patients with advanced NSCLC benefit from Immune checkpoint blockers (ICBs). No biomarker is validated to choose between ICBs monotherapy or in combination with chemotherapy (Chemo-ICB) when PD-L1 expression is above 50%. The aim of the present study is to validate the biomarker validity of total Metabolic Tumor Volume (tMTV) as assessed by 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography ([18F]FDG-PET) Material and methods This is a multicentric retrospective study. Patients with advanced NSCLC treated with ICBs, chemotherapy plus ICBs and chemotherapy were enrolled in 12 institutions from 4 countries. Inclusion criteria was a positive PET scan performed within 42 days from treatment start. TMTV was analyzed at each center based on a 42% SUVmax threshold. High tMTV was defined ad tMTV>median Results 493 patients were included, 163 treated with ICBs alone, 236 with chemo-ICBs and 94 with CT. No correlation was found between PD-L1 expression and tMTV. Median PFS for patients with high tMTV (100.1 cm3) was 3.26 months (95% CI 1.94–6.38) vs 14.70 (95% CI 11.51–22.59) for those with low tMTV (p=0.0005). Similarly median OS for pts with high tMTV was 11.4 months (95% CI 8.42 – 19.1) vs 33.1 months for those with low tMTV (95% CI 22.59 – NA), p .00067. In chemo-ICBs treated patients no correlation was found for OS (p = 0.11) and a borderline correlation was found for PFS (p=0.059). Patients with high tMTV and PD-L1 ≥ 50% had a better PFS when treated with combination of chemotherapy and ICBs respect to ICBs alone, with 3.26 months (95% CI 1.94 – 5.79) for ICBs vs 11.94 (95% CI 5.75 – NA) for Chemo ICBs (p = 0.043). Conclusion tMTV is predictive of ICBs benefit, not to CT benefit. tMTV can help to select the best upfront strategy in patients with high tMTV.
Resumo:
A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.
Resumo:
Although MRI is utilized for planning the resection of soft-tissue tumors, it is not always capable of differentiating benign from malignant lesions. The risk of local recurrence of soft-tissue sarcomas is increased when biopsies are performed before resection and by inadequate resections. PET associated with computed tomography using fluorodeoxyglucose labeled with fluorine-18 ((18)F-FDG PET/CT) may help differentiate between benign and malignant tumors, thus avoiding inadequate resections and making prior biopsies unnecessary. The purpose of this study was to evaluate the usefulness of (18)F-FDG PET/CT in differentiating benign from malignant solid soft-tissue lesions. Patients with solid lesions of the limbs or abdominal wall detected by MRI were submitted to (18)F-FDG PET/CT. The maximum standardized uptake value (SUVmax) cutoff was determined to differentiate malignant from benign tumors. Regardless of the (18)F-FDG PET/CT results all patients underwent biopsy and surgery. MRI was performed in 54 patients, and 10 patients were excluded because of purely lipomatose or cystic lesions. (18)F-FDG PET/CT was performed in the remaining 44 patients. Histopathology revealed 26 (59%) benign and 18 (41%) malignant soft-tissue lesions. A significant difference in SUVmax was observed between benign and malignant soft-tissue lesions. The SUVmax cutoff of 3.0 differentiated malignant from benign lesions with 100% sensitivity, 83.3% specificity, 89.6% accuracy, 78.3% positive predictive value, and 100% negative predictive value. (18)F-FDG PET/CT seems to be able to differentiate benign from malignant soft-tissue lesions with good accuracy and very high negative predictive value. Incorporating (18)F-FDG PET/CT into the diagnostic algorithm of these patients may prevent inadequate resections and unnecessary biopsies.
Resumo:
Glass-ceramics are prepared by controlled separation of crystal phases in glasses, leading to uniform and dense grain structures. On the other hand, chemical leaching of soluble crystal phases yields porous glass-ceramics with important applications. Here, glass/ceramic interfaces of niobo-, vanado- and titano-phosphate glasses were studied by micro-Raman spectroscopy, whose spatial resolution revealed the multiphase structures. Phase-separation mechanisms were also determined by this technique, revealing that interface composition remained unchanged as the crystallization front advanced for niobo- and vanadophosphate glasses (interface-controlled crystallization). For titanophosphate glasses, phase composition changed continuously with time up to the equilibrium composition, indicating a spinodal-type phase separation.
Resumo:
This paper proposes a methodology for spectrophotometric determination of hexamethylenetetramine (HMT) by using chromotropic acid in a phosphoric acid media employing a domestic microwave oven as a source of heating. The reddish-purple soluble product is quantitatively formed after 30 s of irradiation and obeys the Beer´s law in the range between 0.1-1.2 mg L-1 HMT (r = 0.99925). The method was applied successfully in commercial pharmaceutical preparations containing dyes in their composition. The results showed that the method proposed is feasible for simplicity, speed, low cost, precision and accuracy when compared with United States Pharmacopeia official method.
Resumo:
OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.
Resumo:
Background: The cultivar Micro-Tom (MT) is regarded as a model system for tomato genetics due to its short life cycle and miniature size. However, efforts to improve tomato genetic transformation have led to protocols dependent on the costly hormone zeatin, combined with an excessive number of steps. Results: Here we report the development of a MT near-isogenic genotype harboring the allele Rg1 (MT-Rg1), which greatly improves tomato in vitro regeneration. Regeneration was further improved in MT by including a two-day incubation of cotyledonary explants onto medium containing 0.4 mu M 1-naphthaleneacetic acid (NAA) before cytokinin treatment. Both strategies allowed the use of 5 mu M 6-benzylaminopurine (BAP), a cytokinin 100 times less expensive than zeatin. The use of MT-Rg1 and NAA pre-incubation, followed by BAP regeneration, resulted in high transformation frequencies (near 40%), in a shorter protocol with fewer steps, spanning approximately 40 days from Agrobacterium infection to transgenic plant acclimatization. Conclusions: The genetic resource and the protocol presented here represent invaluable tools for routine gene expression manipulation and high throughput functional genomics by insertional mutagenesis in tomato.
Resumo:
In this work, the effects of indenter tip roundness oil the load-depth indentation curves were analyzed using finite element modeling. The tip roundness level was Studied based on the ratio between tip radius and maximum penetration depth (R/h(max)), which varied from 0.02 to 1. The proportional Curvature constant (C), the exponent of depth during loading (alpha), the initial unloading slope (S), the correction factor (beta), the level of piling-up or sinking-in (h(c)/h(max)), and the ratio h(max)/h(f) are shown to be strongly influenced by the ratio R/h(max). The hardness (H) was found to be independent of R/h(max) in the range studied. The Oliver and Pharr method was successful in following the variation of h(c)/h(max) with the ratio R/h(max) through the variation of S with the ratio R/h(max). However, this work confirmed the differences between the hardness values calculated using the Oliver-Pharr method and those obtained directly from finite element calculations; differences which derive from the error in area calculation that Occurs when given combinations of indented material properties are present. The ratio of plastic work to total work (W(p)/W(t)) was found to be independent of the ratio R/h(max), which demonstrates that the methods for the Calculation of mechanical properties based on the *indentation energy are potentially not Susceptible to errors caused by tip roundness.