940 resultados para MEAN-FIELD SIMULATIONS
Resumo:
In this work, we used direct measurements with the surface force apparatus to determine the pH-dependent electrostatic charge density of a single binding face of streptavidin. Mean field calculations have been used with considerable success to model electrostatic potential fields near protein surfaces, but these models and their inherent assumptions have not been tested directly at the molecular level. Using the force apparatus and immobilized, oriented monolayers of streptavidin, we measured a pI of 5–5.5 for the biotin-binding face of the protein. This differs from the pI of 6.3 for the soluble protein and confirms that we probed the local electrostatic features of the macromolecule. With finite difference solutions of the linearized Poisson–Boltzmann equation, we then calculated the pH-dependent charge densities adjacent to the same face of the protein. These calculated values agreed quantitatively with those obtained by direct force measurements. Although our study focuses on the pH-dependence of surface electrostatics, this direct approach to probing the electrostatic features of proteins is applicable to investigations of any perturbations that alter the charge distribution of the surfaces of immobilized molecules.
Resumo:
We introduce a computational method to optimize the in vitro evolution of proteins. Simulating evolution with a simple model that statistically describes the fitness landscape, we find that beneficial mutations tend to occur at amino acid positions that are tolerant to substitutions, in the limit of small libraries and low mutation rates. We transform this observation into a design strategy by applying mean-field theory to a structure-based computational model to calculate each residue's structural tolerance. Thermostabilizing and activity-increasing mutations accumulated during the experimental directed evolution of subtilisin E and T4 lysozyme are strongly directed to sites identified by using this computational approach. This method can be used to predict positions where mutations are likely to lead to improvement of specific protein properties.
Resumo:
Aims. We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, to determine their activity level, spot distribution, and differential rotation. Both stars were previously discovered by us to be young stars and were observed by the NASA Kepler mission. Methods. The fundamental stellar parameters (vsini, spectral type, T_eff, log g, and [Fe/H]) were derived from optical spectroscopy by comparison with both standard-star and synthetic spectra. The spectra of the targets allowed us to study the chromospheric activity based on the emission in the core of hydrogen Hα and Ca ii infrared triplet (IRT) lines, which was revealed by the subtraction of inactive templates. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation were performed in a Bayesian manner, using a Markov chain Monte Carlo method. Results. We find that both stars are Sun-like (of G1.5 V spectral type) and have an age of about 100–200 Myr, based on their lithium content and kinematics. Their youth is confirmed by their high level of chromospheric activity, which is comparable to that displayed by the early G-type stars in the Pleiades cluster. The Balmer decrement and flux ratio of their Ca ii-IRT lines suggest that the formation of the core of these lines occurs mainly in optically thick regions that are analogous to solar plages. The spot model applied to the Kepler photometry requires at least seven persistent spots in the case of KIC 7985370 and nine spots in the case of KIC 7765135 to provide a satisfactory fit to the data. The assumption of the longevity of the star spots, whose area is allowed to evolve with time, is at the heart of our spot-modelling approach. On both stars, the surface differential rotation is Sun-like, with the high-latitude spots rotating slower than the low-latitude ones. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dΩ ≈ 0.18 rad d^-1), which disagrees with the predictions of some mean-field models of differential rotation for rapidly rotating stars. Our results agree instead with previous works on solar-type stars and other models that predict a higher latitudinal shear, increasing with equatorial angular velocity, that can vary during the magnetic cycle.
Resumo:
We present a mean field model for spin glasses with a natural notion of distance built in, namely, the Edwards-Anderson model on the diluted D-dimensional unit hypercube in the limit of large D. We show that finite D effects are strongly dependent on the connectivity, being much smaller for a fixed coordination number. We solve the nontrivial problem of generating these lattices. Afterward, we numerically study the nonequilibrium dynamics of the mean field spin glass. Our three main findings are the following: i the dynamics is ruled by an infinite number of time sectors, ii the aging dynamics consists of the growth of coherent domains with a nonvanishing surface-volume ratio, and iii the propagator in Fourier space follows the p4 law. We study as well the finite D effects in the nonequilibrium dynamics, finding that a naive finite size scaling ansatz works surprisingly well.
Resumo:
We propose a realistic scheme to quantum simulate the so-far experimentally unobserved topological Mott insulator phase-an interaction-driven topological insulator-using cold atoms in an optical Lieb lattice. To this end, we study a system of spinless fermions in a Lieb lattice, exhibiting repulsive nearest-and next-to-nearest-neighbor interactions and derive the associated zero-temperature phase diagram within mean-field approximation. In particular, we analyze how the interactions can dynamically generate a charge density wave ordered, a nematic, and a topologically nontrivial quantum anomalous Hall phase. We characterize the topology of the different phases by the Chern number and discuss the possibility of phase coexistence. Based on the identified phases, we propose a realistic implementation of this model using cold Rydberg-dressed atoms in an optical lattice. The scheme, which allows one to access, in particular, the topological Mott insulator phase, robustly and independently of its exact position in parameter space, merely requires global, always-on off-resonant laser coupling to Rydberg states and is feasible with state-of-the-art experimental techniques that have already been demonstrated in the laboratory.
Resumo:
The ion Drift Kinetic Equation (DKE) which describes the ion coUisional transport is solved for the TJ-II device plasmas. This non-linear equation is computed by peribrming a mean field iterative calculation. In each step of the calculation, a Fokker-Planck equation is solved by means of the Langevin approach: one million particles are followed in a realistic TJ-II magnetic configuration, taking into account collisions and electric field. This allows to avoid the assumptions made in the usual neoclassical approach, namely considering radially narrow particle trajectories, diffusive transport, energy conservation and infinite parallel transport. As a consequence, global features of transport, not present in the customary neoclassical models, appear: non-diffusive transport and asymmetries on the magnetic surfaces.
Resumo:
We develop a theory to calculate exciton binding energies of both two- and three-dimensional spin polarized exciton gases within a mean field approach. Our method allows the analysis of recent experiments showing the importance of the polarization and intensity of the excitation light on the exciton luminescence of GaAs quantum wells. We study the breaking of the spin degeneracy observed at high exciton density (5×1010 cm2). Energy level splitting between spin +1 and spin -1 is shown to be due to many-body interexcitonic exchange while the spin relaxation time is controlled by intraexciton exchange. © 1996 The American Physical Society.
Resumo:
A density-functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density-functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie temperature by additional confinement of the holes in a δ-doped layer of Mn by a quantum well.
Resumo:
In a study of the ferromagnetic phase of a multilayer digital ferromagnetic semiconductor in the mean-field and effective-mass approximations, we find the exchange interaction to have the dominant energy scale of the problem, effectively controlling the spatial distribution of the carrier spins in the digital ferromagnetic heterostructures. In the ferromagnetic phase, the majority-spin and minority-spin carriers tend to be in different regions of the space (spin separation). Hence, the charge distribution of carriers also changes noticeably from the ferromagnetic to the paramagnetic phase. An example of a design to exploit these phenomena is given here.
Resumo:
An electronic phase with coexisting magnetic and ferroelectric order is predicted for graphene ribbons with zigzag edges. The electronic structure of the system is described with a mean-field Hubbard model that yields results very similar to those of density functional calculations. Without further approximations, the mean-field theory is recasted in terms of a BCS wave function for electron-hole pairs in the edge bands. The BCS coherence present in each spin channel is related to spin-resolved electric polarization. Although the total electric polarization vanishes, due to an internal phase locking of the BCS state, strong magnetoelectric effects are expected in this system. The formulation naturally accounts for the two gaps in the quasiparticle spectrun, Δ0 and Δ1, and relates them to the intraband and interband self-energies.
Resumo:
We address the electronic structure and magnetic properties of vacancies and voids both in graphene and graphene ribbons. By using a mean-field Hubbard model, we study the appearance of magnetic textures associated with removing a single atom (vacancy) and multiple adjacent atoms (voids) as well as the magnetic interactions between them. A simple set of rules, based on the Lieb theorem, link the atomic structure and the spatial arrangement of the defects to the emerging magnetic order. The total spin S of a given defect depends on its sublattice imbalance, but some defects with S=0 can still have local magnetic moments. The sublattice imbalance also determines whether the defects interact ferromagnetically or antiferromagnetically with one another and the range of these magnetic interactions is studied in some simple cases. We find that in semiconducting armchair ribbons and two-dimensional graphene without global sublattice imbalance, there is a maximum defect density above which local magnetization disappears. Interestingly, the electronic properties of semiconducting graphene ribbons with uncoupled local moments are very similar to those of diluted magnetic semiconductors, presenting giant Zeeman splitting.
Resumo:
We study the effect of sublattice symmetry breaking on the electronic, magnetic, and transport properties of two-dimensional graphene as well as zigzag terminated one- and zero-dimensional graphene nanostructures. The systems are described with the Hubbard model within the collinear mean field approximation. We prove that for the noninteracting bipartite lattice with an unequal number of atoms in each sublattice, in-gap states still exist in the presence of a staggered on-site potential ±Δ/2. We compute the phase diagram of both 2D and 1D graphene with zigzag edges, at half filling, defined by the normalized interaction strength U/t and Δ/t, where t is the first neighbor hopping. In the case of 2D we find that the system is always insulating, and we find the Uc(Δ) curve above which the system goes antiferromagnetic. In 1D we find that the system undergoes a phase transition from nonmagnetic insulator for U
Resumo:
We study the magnetic properties of nanometer-sized graphene structures with triangular and hexagonal shapes terminated by zigzag edges. We discuss how the shape of the island, the imbalance in the number of atoms belonging to the two graphene sublattices, the existence of zero-energy states, and the total and local magnetic moment are intimately related. We consider electronic interactions both in a mean-field approximation of the one-orbital Hubbard model and with density functional calculations. Both descriptions yield values for the ground state total spin S consistent with Lieb’s theorem for bipartite lattices. Triangles have a finite S for all sizes whereas hexagons have S=0 and develop local moments above a critical size of ≈1.5 nm.
Resumo:
The relation between tunnel magnetoresistance (TMR) and spin polarization is explored for GaMnAs∕GaAlAs∕GaMnAs structures where the carriers experience strong spin–orbit interactions. TMR is calculated using the Landauer approach. The materials are described in the 6 band k⋅p model which includes spin–orbit interaction. Ferromagnetism is described in the virtual crystal mean field approximations. Our results indicate that TMR is a function of spin polarization and barrier thickness. As a result of the stong spin–orbit interactions, TMR also depends on the the angle between current flow direction and the electrode magnetization. These results compromise the validity of Julliere formula.
Resumo:
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N noninteracting sites connecting both of them. The interdot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of a small number of sites, so that Kondo box effects are present, varying the coupling between the dots and the chain. For odd N and small coupling between the interdot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dot spins by the spin in the finite chain at the Fermi level. As the coupling to the interdot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule (formed by the finite chain and the quantum dots) spin by the leads. For even N the two Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism between the quantum dots. We finally study how the transport properties are affected as N is increased. For the study we used exact multiconfigurational Lanczos calculations and finite-U slave-boson mean-field theory at T=0. The results obtained with both methods describe qualitatively and also quantitatively the same physics.