938 resultados para MATHEMATICAL MODEL
Resumo:
Investigation of high pressure pretreatment process for gold leaching is the objective of the present master's thesis. The gold ores and concentrates which cannot be easily treated by leaching process are called "refractory". These types of ores or concentrates often have high content of sulfur and arsenic that renders the precious metal inaccessible to the leaching agents. Since the refractory ores in gold manufacturing industry take a considerable share, the pressure oxidation method (autoclave method) is considered as one of the possible ways to overcome the related problems. Mathematical modeling is the main approach in this thesis which was used for investigation of high pressure oxidation process. For this task, available information from literature concerning this phenomenon, including chemistry, mass transfer and kinetics, reaction conditions, applied apparatus and application, was collected and studied. The modeling part includes investigation of pyrite oxidation kinetics in order to create a descriptive mathematical model. The following major steps are completed: creation of process model by using the available knowledge; estimation of unknown parameters and determination of goodness of the fit; study of the reliability of the model and its parameters.
Resumo:
Adaptive control systems are one of the most significant research directions of modern control theory. It is well known that every mechanical appliance’s behavior noticeably depends on environmental changes, functioning-mode parameter changes and changes in technical characteristics of internal functional devices. An adaptive controller involved in control process allows reducing an influence of such changes. In spite of this such type of control methods is applied seldom due to specifics of a controller designing. The work presented in this paper shows the design process of the adaptive controller built by Lyapunov’s function method for the Hydraulic Drive. The calculation needed and the modeling were conducting with MATLAB® software including Simulink® and Symbolic Math Toolbox™ etc. In the work there was applied the Jacobi matrix linearization of the object’s mathematical model and derivation of the suitable reference models based on Newton’s characteristic polynomial. The intelligent adaptive to nonlinearities algorithm for solving Lyapunov’s equation was developed. Developed algorithm works properly but considered plant is not met requirement of functioning with. The results showed confirmation that adaptive systems application significantly increases possibilities in use devices and might be used for correction a system’s behavior dynamics.
Resumo:
The main objective of this study was to develop mathematical model capable to describe the effect of ultrastructural features on the longitudinal modulus of elasticity of softwood fiber. Another objective was to identify, based on ultrastructural features, a potential explanatory factor for the mechanical difference between Norway spruce and Scots pine fibers and to demonstrate its influence utilizing developed modelling tools. According to the literature, the main difference between the pine and spruce fibers is the pit structure, which is clearly different in these fibers. The spruce fiber contains a lot of tiny pits, whereas the pits of the pine fiber are larger and the total number of them is smaller. The effect of the pits on the longitudinal modulus of elasticity of fiber is studied with both the analytical and the numerical model. The results show that, although the spruce fiber seems to contain clearly more pits, larger pits appearing in the pine fiber turn out to have a stronger influence on the longitudinal modulus of elasticity of the fiber. The effect of local variation of microfibril angle which occurs near the pits seems to be minor. Moreover, the results suggest that spruce fibers may have higher ultimate strength due to the more uniform straining behavior.
Resumo:
In this thesis, stepwise titration with hydrochloric acid was used to obtain chemical reactivities and dissolution rates of ground limestones and dolostones of varying geological backgrounds (sedimentary, metamorphic or magmatic). Two different ways of conducting the calculations were used: 1) a first order mathematical model was used to calculate extrapolated initial reactivities (and dissolution rates) at pH 4, and 2) a second order mathematical model was used to acquire integrated mean specific chemical reaction constants (and dissolution rates) at pH 5. The calculations of the reactivities and dissolution rates were based on rate of change of pH and particle size distributions of the sample powders obtained by laser diffraction. The initial dissolution rates at pH 4 were repeatedly higher than previously reported literature values, whereas the dissolution rates at pH 5 were consistent with former observations. Reactivities and dissolution rates varied substantially for dolostones, whereas for limestones and calcareous rocks, the variation can be primarily explained by relatively large sample standard deviations. A list of the dolostone samples in a decreasing order of initial reactivity at pH 4 is: 1) metamorphic dolostones with calcite/dolomite ratio higher than about 6% 2) sedimentary dolostones without calcite 3) metamorphic dolostones with calcite/dolomite ratio lower than about 6% The reactivities and dissolution rates were accompanied by a wide range of experimental techniques to characterise the samples, to reveal how different rocks changed during the dissolution process, and to find out which factors had an influence on their chemical reactivities. An emphasis was put on chemical and morphological changes taking place at the surfaces of the particles via X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Supporting chemical information was obtained with X-Ray Fluorescence (XRF) measurements of the samples, and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) measurements of the solutions used in the reactivity experiments. Information on mineral (modal) compositions and their occurrence was provided by X-Ray Diffraction (XRD), Energy Dispersive X-ray analysis (EDX) and studying thin sections with a petrographic microscope. BET (Brunauer, Emmet, Teller) surface areas were determined from nitrogen physisorption data. Factors increasing chemical reactivity of dolostones and calcareous rocks were found to be sedimentary origin, higher calcite concentration and smaller quartz concentration. Also, it is assumed that finer grain size and larger BET surface areas increase the reactivity although no certain correlation was found in this thesis. Atomic concentrations did not correlate with the reactivities. Sedimentary dolostones, unlike metamorphic ones, were found to have porous surface structures after dissolution. In addition, conventional (XPS) and synchrotron based (HRXPS) X-ray Photoelectron Spectroscopy were used to study bonding environments on calcite and dolomite surfaces. Both samples are insulators, which is why neutralisation measures such as electron flood gun and a conductive mask were used. Surface core level shifts of 0.7 ± 0.1 eV for Ca 2p spectrum of calcite and 0.75 ± 0.05 eV for Mg 2p and Ca 3s spectra of dolomite were obtained. Some satellite features of Ca 2p, C 1s and O 1s spectra have been suggested to be bulk plasmons. The origin of carbide bonds was suggested to be beam assisted interaction with hydrocarbons found on the surface. The results presented in this thesis are of particular importance for choosing raw materials for wet Flue Gas Desulphurisation (FGD) and construction industry. Wet FGD benefits from high reactivity, whereas construction industry can take advantage of slow reactivity of carbonate rocks often used in the facades of fine buildings. Information on chemical bonding environments may help to create more accurate models for water-rock interactions of carbonates.
Resumo:
The desire to create a statistical or mathematical model, which would allow predicting the future changes in stock prices, was born many years ago. Economists and mathematicians are trying to solve this task by applying statistical analysis and physical laws, but there are still no satisfactory results. The main reason for this is that a stock exchange is a non-stationary, unstable and complex system, which is influenced by many factors. In this thesis the New York Stock Exchange was considered as the system to be explored. A topological analysis, basic statistical tools and singular value decomposition were conducted for understanding the behavior of the market. Two methods for normalization of initial daily closure prices by Dow Jones and S&P500 were introduced and applied for further analysis. As a result, some unexpected features were identified, such as a shape of distribution of correlation matrix, a bulk of which is shifted to the right hand side with respect to zero. Also non-ergodicity of NYSE was confirmed graphically. It was shown, that singular vectors differ from each other by a constant factor. There are for certain results no clear conclusions from this work, but it creates a good basis for the further analysis of market topology.
Resumo:
This research work addresses the problem of building a mathematical model for the given system of heat exchangers and to determine the temperatures, pressures and velocities at the intermediate positions. Such model could be used in nding an optimal design for such a superstructure. To limit the size and computing time a reduced network model was used. The method can be generalized to larger network structures. A mathematical model which includes a system of non-linear equations has been built and solved according to the Newton-Raphson algorithm. The results obtained by the proposed mathematical model were compared with the results obtained by the Paterson approximation and Chen's Approximation. Results of this research work in collaboration with a current ongoing research at the department will optimize the valve positions and hence, minimize the pumping cost and maximize the heat transfer of the system of heat exchangers.
Resumo:
The Thesis is dedicated to development of an operative tool to support decision making of battery energy storages implementation in distribution networks. The basics of various battery technologies, their perspectives and challenges are represented in the Thesis. Mathematical equations that describe economic effect from battery energy storage installation are offered. The main factors that influence profitability of battery settings have been explored and mathematically defined. Mathematical model and principal trends of battery storage profitability under an impact of the major factors are determined. The meaning of annual net value was introduced to show the difference between savings and required costs. The model gives a clear vision for dependencies between annual net value and main factors. Proposals for optimal network and battery characteristics are suggested.
Resumo:
Increased heart rate variability (HRV) and high-frequency content of the terminal region of the ventricular activation of signal-averaged ECG (SAECG) have been reported in athletes. The present study investigates HRV and SAECG parameters as predictors of maximal aerobic power (VO2max) in athletes. HRV, SAECG and VO2max were determined in 18 high-performance long-distance (25 ± 6 years; 17 males) runners 24 h after a training session. Clinical visits, ECG and VO2max determination were scheduled for all athletes during thew training period. A group of 18 untrained healthy volunteers matched for age, gender, and body surface area was included as controls. SAECG was acquired in the resting supine position for 15 min and processed to extract average RR interval (Mean-RR) and root mean squared standard deviation (RMSSD) of the difference of two consecutive normal RR intervals. SAECG variables analyzed in the vector magnitude with 40-250 Hz band-pass bi-directional filtering were: total and 40-µV terminal (LAS40) duration of ventricular activation, RMS voltage of total (RMST) and of the 40-ms terminal region of ventricular activation. Linear and multivariate stepwise logistic regressions oriented by inter-group comparisons were adjusted in significant variables in order to predict VO2max, with a P < 0.05 considered to be significant. VO2max correlated significantly (P < 0.05) with RMST (r = 0.77), Mean-RR (r = 0.62), RMSSD (r = 0.47), and LAS40 (r = -0.39). RMST was the independent predictor of VO2max. In athletes, HRV and high-frequency components of the SAECG correlate with VO2max and the high-frequency content of SAECG is an independent predictor of VO2max.
Resumo:
PPOOLEX-laboratoriokoelaitteistolla tutkitaan höyryn lauhtumiseen liittyviä ilmiöitä Lappeenrannan teknillisen yliopiston Ydinturvallisuuden tutkimusyksikössä. Laitteiston pääkomponentti on sylinterin muotoinen pystysäiliö, joka täytetään kokeita varten osittain vesijohtovedellä. Tehokkaiden laboratoriokokeiden mahdollistamiseksi säiliön veteen liuenneet kaasut on poistettava. Kaasunpoisto toteutetaan Airsepex 4.2 -vedenkäsittelylaitteistolla, joka on liitetty erillisellä kiertopiirillä PPOOLEX-laitteistoon. Tämän kandidaatintyön tavoitteena on esitellä aineensiirron ja kaasunpoiston keskeisiä ilmiöitä PPOOLEX-käytössä. Työn teoriaosan tavoitteena on myös luoda yksinkertainen matemaattinen malli, jonka avulla voidaan mallintaa veden kaasupitoisuutta koelaitteistossa. Työn kokeellisessa osassa tehtiin laboratoriomittaukset, joissa määritetään veden kaasupitoisuuden muutos ajan suhteen. Tehtyihin laboratoriomittauksiin liittyi useita epävarmuuksia, joiden takia saatuihin mittaustuloksiin on syytä suhtautua hyvin kriittisesti. Matemaattinen malli vastasi mittaustuloksia kaasunpoistolaitteiston sammutuksen jälkeen. Kaasunpoistolaitteiston ollessa käytössä matemaattisen mallin tulokset kuitenkin eroavat merkittävästi mittaustuloksista. Erot tuloksissa johtuvat mittauksiin liittyvistä epävarmuuksista sekä matemaattisen mallin oletuksista ja yksinkertaistuksista. PPOOLEX-säiliön vettä ei saada käytetyllä kaasunpoistolaitteistolla täysin kaasuttomaksi. Vielä ei ole varmuutta siitä, saadaanko veden kaasupitoisuus riittävän matalaksi laboratoriokokeita varten.
Resumo:
At present, one of the main concerns of green network is to minimize the power consumption of network infrastructure. Surveys show that, the highest amount of power is consumed by the network devices during its runtime. However to control this power consumption it is important to know which factors has highest impact on this matter. This paper is focused on the measurement and modeling the power consumption of an Ethernet switch during its runtime considering various types of input parameters with all possible combinations. For the experiment, three input parameters are chosen. They are bandwidth, link load and number of connections. The output to be measured is the power consumption of the Ethernet switch. Due to the uncertain power consuming pattern of the Ethernet switch a fully-comprehensive experimental evaluation would require an unfeasible and cumbersome experimental phase. Because of that, design of experiment (DoE) method has been applied to obtain adequate information on the effects of each input parameters on the power consumption. The whole work consists of three parts. In the first part a test bed is planned with input parameters and the power consumption of the switch is measured. The second part is about generating a mathematical model with the help of design of experiment tools. This model can be used for measuring precise power consumption in different scenario and also pinpoint the parameters with higher influence in power consumption. And in the last part, the mathematical model is evaluated by comparing with the experimental values.
Resumo:
This study proposes alternatives to the current methods of processing round-cooked lobster. The paralyzation of lobsters with direct electric shock consumes 10.526 x 10-3 kWh, which is significantly less than the 11 kWh required by the traditional thermal-shock method (based on 60 kg of lobsters). A better weight gain was obtained by immersion of paralyzed lobsters in brine before cooking. Systematic trials combining 3, 6, or 9% brine concentrations with immersion periods of 15, 30, or 45 minutes were performed in order to determine the best combinations. A mathematical model was designed to predict the weight gain of lobsters of different sizes in any combination of treatments. For small lobsters, a 45 minutes immersion in 6% brine gave the best response in terms of weight gain (4.7%) and cooking produced a weight loss of only 1.34% in relation to fresh lobster weight. For medium-sized lobsters, a 45 minutes immersion in 9% brine produced a weight gain of 2.64%, and cooking a weight gain of 1.08%. For large lobsters, a 45 minutes immersion in 6% brine produced a weight gain of 3.87%, and cooking a weight gain of 1.62%.
Resumo:
Osmotic dehydration is considered to be a suitable preprocessing step to reduce the water content of foods. Such products can be dried further by conventional drying processes to lower their water activity and thus extend their shelf life. In this work, banana (Musa sapientum) fruits were initially treated by osmosis by varying several parameters of the processing conditions which included, besides the cutting format (longitudinal and round slices) of the fruit, temperature (28 and 49 ºC), syrup concentration (50, 60 and 67 ºBrix), treatment time (2, 4, 6, 10, 14, 16 and 18 hours), fruit and syrup ratio (1:1, 1:2, 1:3 and 1:4) and agitation effects. The best quality products were obtained by the use of the 67 ºBrix syrup, for 60 minutes of osmotic treatment, at 28 ºC, having a fruit and syrup ratio of 1:1 and agitation. The experimental data obtained on reduction in moisture content during the osmotic treatment were correlated with the experimental equation of M/Mo = Ae(-Kt), where A and K are the constants which represent the geometry and effective diffusivity of the drying process. This simplified mathematical model correlated well with the experimental results.
Resumo:
Wind turbines based on doubly fed induction generators (DFIG) become the most popular solution in high power wind generation industry. While this topology provides great performance with the reduced power rating of power converter, it has more complicated structure in comparison with full-rated topologies, and therefore leads to complexity of control algorithms and electromechanical processes in the system. The purpose of presented study is to present a proper vector control scheme for the DFIG and overall control for the WT to investigate its behavior at different wind speeds and in different grid voltage conditions: voltage sags, magnitude and frequency variations. The key principles of variable-speed wind turbine were implemented in simulation model and demonstrated during the study. Then, based on developed control scheme and mathematical model, the set of simulation is made to analyze reactive power capabilities of the DFIG wind turbine. Further, the rating of rotor-side converter is modified to not only generate active rated active power, but also to fulfill Grid Codes. Results of modelling and analyzing of the DFIG WT behavior under different speeds and different voltage conditions are presented in the work.
Resumo:
Poultry carcasses have to be chilled to reduce the central breast temperatures from approximately 40 to 4 °C, which is crucial to ensure safe products. This work investigated the cooling of poultry carcasses by water immersion. Poultry carcasses were taken directly from an industrial processing plant and cooled in a pilot chiller, which was built to investigate the influence of the method and the water stirring intensity on the carcasses cooling. A simplified empiric mathematical model was used to represent the experimental results. These results indicated clearly that the understanding and quantification of heat transfer between the carcass and the cooling water is crucial to improve processes and equipment. The proposed mathematical model is a useful tool to represent the dynamics of carcasses cooling, and it can be used to compare different chiller operational conditions in industrial plants. Therefore, this study reports data and a simple mathematical tool to handle an industrial problem with little information available in the literature.
Resumo:
The objective of this work was to study the influence of temperature on the respiration rate of minimally processed organic carrots (Daucus Carota L. cv. Brasília) with and without the application of a gelatin film. The samples were packed in flexible bags and stored at 1, 5 and 10 °C. During the five days of storage, the CO2 and O2 concentrations in the headspace of the package were monitored by gas chromatography, and the mathematical model based on enzymatic kinetics was used to estimate the respiration rate of minimally processed organic carrots. The effect of temperature on the respiration rate was evaluated by the Arrhenius equation. The results showed that the O2 concentration decreased during the storage period and the CO2 concentration increased. The lowest O2 concentrations of 2.59 and 2.66% were found for the samples stored at 10 °C with and without the film, respectively. For the CO2 concentration, the highest concentrations of 16.25 and 16.32% were again found for the temperature of 10 °C with and without the application of the film, respectively. At the temperature of 1 °C, the maximum respiratory rates for the samples without and with the film were 10.82 and 10.44 mL CO2.kg-1/hour, respectively, after 72 hours of storage. The greatest respiratory rate was obtained at 10 °C, the maximum peak being reached after 50 hours. Activation energy values were of 50.59 kJ.mol-1, for the samples with the film, and 51.88 kJ.mol-1 for the samples without the film.