904 resultados para M60 machine gun


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concentration of organic acids in anaerobic digesters is one of the most critical parameters for monitoring and advanced control of anaerobic digestion processes. Thus, a reliable online-measurement system is absolutely necessary. A novel approach to obtaining these measurements indirectly and online using UV/vis spectroscopic probes, in conjunction with powerful pattern recognition methods, is presented in this paper. An UV/vis spectroscopic probe from S::CAN is used in combination with a custom-built dilution system to monitor the absorption of fully fermented sludge at a spectrum from 200 to 750 nm. Advanced pattern recognition methods are then used to map the non-linear relationship between measured absorption spectra to laboratory measurements of organic acid concentrations. Linear discriminant analysis, generalized discriminant analysis (GerDA), support vector machines (SVM), relevance vector machines, random forest and neural networks are investigated for this purpose and their performance compared. To validate the approach, online measurements have been taken at a full-scale 1.3-MW industrial biogas plant. Results show that whereas some of the methods considered do not yield satisfactory results, accurate prediction of organic acid concentration ranges can be obtained with both GerDA and SVM-based classifiers, with classification rates in excess of 87% achieved on test data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parallel kinematic machine (PKM) topology can only give its best performance when its geometrical parameters are optimized. In this paper, dimensional synthesis of a newly developed PKM is presented for the first time. An optimization method is developed with the objective to maximize both workspace volume and global dexterity of the PKM. Results show that the method can effectively identify design parameter changes under different weighted objectives. The PKM with optimized dimensions has a large workspace to footprint ratio and a large well-conditioned workspace, hence justifies its suitability for large volume machining.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report some existing work, inspired by analogies between human thought and machine computation, showing that the informational state of a digital computer can be decoded in a similar way to brain decoding. We then discuss some proposed work that would leverage this analogy to shed light on the amount of information that may be missed by the technical limitations of current neuroimaging technologies. © 2012 Springer-Verlag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article will discuss a recent ensemble composition entitled Starbog which was toured and broadcast in Britain in 2006 . The composition of Starbog focused on developing working methods which combined computer-based techniques (using OpenMusic) with more subconscious means of generating musical ideas. The challenge in achieving this was as much aesthetic/philosophical as it was technical and the present article is intending as a ‘sounding’ which focuses on the influence OpenMusic has had on the composer’s music, rather than documenting the nature of the often simple application of algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the construction of linear-in-the-parameters (LITP) models for multi-output regression problems. Most existing stepwise forward algorithms choose the regressor terms one by one, each time maximizing the model error reduction ratio. The drawback is that such procedures cannot guarantee a sparse model, especially under highly noisy learning conditions. The main objective of this paper is to improve the sparsity and generalization capability of a model for multi-output regression problems, while reducing the computational complexity. This is achieved by proposing a novel multi-output two-stage locally regularized model construction (MTLRMC) method using the extreme learning machine (ELM). In this new algorithm, the nonlinear parameters in each term, such as the width of the Gaussian function and the power of a polynomial term, are firstly determined by the ELM. An initial multi-output LITP model is then generated according to the termination criteria in the first stage. The significance of each selected regressor is checked and the insignificant ones are replaced at the second stage. The proposed method can produce an optimized compact model by using the regularized parameters. Further, to reduce the computational complexity, a proper regression context is used to allow fast implementation of the proposed method. Simulation results confirm the effectiveness of the proposed technique. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mobile malware has continued to grow at an alarming rate despite on-going mitigation efforts. This has been much more prevalent on Android due to being an open platform that is rapidly overtaking other competing platforms in the mobile smart devices market. Recently, a new generation of Android malware families has emerged with advanced evasion capabilities which make them much more difficult to detect using conventional methods. This paper proposes and investigates a parallel machine learning based classification approach for early detection of Android malware. Using real malware samples and benign applications, a composite classification model is developed from parallel combination of heterogeneous classifiers. The empirical evaluation of the model under different combination schemes demonstrates its efficacy and potential to improve detection accuracy. More importantly, by utilizing several classifiers with diverse characteristics, their strengths can be harnessed not only for enhanced Android malware detection but also quicker white box analysis by means of the more interpretable constituent classifiers.