759 resultados para Literacy in mathematics
Resumo:
The 51st ANZIAM Conference was held on 1–5 February 2015 in the Outrigger Hotel, Surfers Paradise, Australia. A total of 229 people registered for the conference, with nine plenary presentations, 78 student presentations and 107 non-student presentations. Highlights of the conference included the plenary talks, presentations by the 2014 Michell and ANZIAM Medalists, the Women in Mathematics Lunch and the Conference Dinner and Awards Ceremony. The main conference was followed by a one-day workshop entitled ‘Discrete mathematical models in the life sciences’, held at Queensland University of Technology, Brisbane, on February 6, 2015.
Resumo:
Tämän itsenäisistä osatutkimuksista koostuvan tutkimussarjan tavoitteena oli pyrkiä täydentämään kuvaa matemaattisilta taidoiltaan heikkojen lasten ja nuorten tiedonkäsittelyvalmiuksista selvittämällä, ovatko visuaalis-spatiaaliset työmuistivalmiudet yhteydessä matemaattiseen suoriutumiseen. Teoreettinen viitekehys rakentui Baddeleyn (1986, 1997) kolmikomponenttimallin ympärille. Työmuistikäsitys oli kuitenkin esikuvaansa laajempi sisällyttäen visuaalis-spatiaaliseen työmuistiin Cornoldin ja Vecchin (2003) termein sekä passiiviset varastotoiminnot että aktiiviset prosessointitoiminnot. Yhteyksiä työmuistin ja matemaattisten taitojen välillä tarkasteltiin viiden eri osatutkimuksen avulla. Kaksi ensimmäistä keskittyivät alle kouluikäisten lukukäsitteen hallinnan ja visuaalis-spatiaalisten työmuistivalmiuksen tutkimiseen ja kolme jälkimmäistä peruskoulun yhdeksäsluokkalaisten matemaattisten taitojen ja visuaalis-spatiaalisten työmuistitaitojen välisten yhteyksien selvittämiseen. Tutkimussarjan avulla pyrittiin selvittämään, ovatko visuaalis-spatiaaliset työmuistivalmiudet yhteydessä matemaattiseen suoriutumiseen sekä esi- että yläkouluiässä (osatutkimukset I, II, III, IV, V), onko yhteys spesifi rajoittuen tiettyjen visuaalis-spatiaalisten valmiuksien ja matemaattisen suoriutumisen välille vai onko se yleinen koskien matemaattisia taitoja ja koko visuaalis-spatiaalista työmuistia (osatutkimukset I, II, III, IV, V) tai työmuistia laajemmin (osatutkimukset II, III) sekä onko yhteys työmuistispesifi vai selitettävissä älykkyyden kaltaisella yleisellä päättelykapasiteetilla (osatutkimukset I, II, IV). Tutkimussarjan tulokset osoittavat, että kyky säilyttää ja käsitellä hetkellisesti visuaalis-spatiaalista informaatiota on yhteydessä matemaattiseen suoriutumiseen eikä yhteyttä voida selittää yksinomaan joustavalla älykkyydellä. Suoriutuminen visuaalis-spatiaalista työmuistia mittaavissa tehtävissä on yhteydessä sekä alle kouluikäisten esimatemaattisten taitojen hallintaan että peruskoulun yhdeksäsluokkalaisten matematiikan taitoihin. Matemaattisilta taidoiltaan heikkojen lasten ja nuorten visuaalis-spatiaalisten työmuistiresurssien heikkoudet vaikuttavat kuitenkin olevan sangen spesifejä rajoittuen tietyntyyppisissä muistitehtävissä vaadittaviin valmiuksiin; kaikissa visuaalis-spatiaalisen työmuistin valmiuksia mittaavissa tehtävissä suoriutuminen ei ole yhteydessä matemaattisiin taitoihin. Työmuistivalmiuksissa ilmenevät erot sekä alle kouluikäisten että kouluikäisten matemaattisilta taidoiltaan heikkojen ja normaalisuoriutujien välillä näyttävät olevan kuitenkin jossain määrin yhteydessä kielellisiin taitoihin viitaten vaikeuksien tietynlaiseen kasautumiseen; niillä matemaattisesti heikoilla, joilla on myös kielellisiä vaikeuksia, on keskimäärin laajemmat työmuistiheikkoudet. Osalla matematiikassa heikosti suoriutuvista on näin ollen selvästi keskimääräistä heikommat visuaalis-spatiaaliset työmuistivalmiudet, ja tämä heikkous saattaa olla yksi mahdollinen syy tai vaikeuksia lisäävä tekijä heikon matemaattisen suoriutumisen taustalla. Visuaalis-spatiaalisen työmuistin heikkous merkitsee konkreettisesti vähemmän mentaalista prosessointitilaa, joka rajoittaa oppimista ja suoritustilanteita. Tiedonkäsittelyvalmiuksien heikkous liittyy nimenomaan oppimisnopeuteen, ei asioiden opittavuuteen sinänsä. Mikäli oppimisympäristö ottaa huomioon valmiuksien rajallisuuden, työmuistiheikkoudet eivät todennäköisesti estä asioiden oppimista sinänsä. Avainsanat: Työmuisti, visuaalis-spatiaalinen työmuisti, matemaattiset taidot, lukukäsite, matematiikan oppimisvaikeudet
Resumo:
From Arithmetic to Algebra. Changes in the skills in comprehensive school over 20 years. In recent decades we have emphasized the understanding of calculation in mathematics teaching. Many studies have found that better understanding helps to apply skills in new conditions and that the ability to think on an abstract level increases the transfer to new contexts. In my research I take into consideration competence as a matrix where content is in a horizontal line and levels of thinking are in a vertical line. The know-how is intellectual and strategic flexibility and understanding. The resources and limitations of memory have their effects on learning in different ways in different phases. Therefore both flexible conceptual thinking and automatization must be considered in learning. The research questions that I examine are what kind of changes have occurred in mathematical skills in comprehensive school over the last 20 years and what kind of conceptual thinking is demonstrated by students in this decade. The study consists of two parts. The first part is a statistical analysis of the mathematical skills and their changes over the last 20 years in comprehensive school. In the test the pupils did not use calculators. The second part is a qualitative analysis of the conceptual thinking of pupils in comprehensive school in this decade. The study shows significant differences in algebra and in some parts of arithmetic. The largest differences were detected in the calculation skills of fractions. In the 1980s two out of three pupils were able to complete tasks with fractions, but in the 2000s only one out of three pupils were able to do the same tasks. Also remarkable is that out of the students who could complete the tasks with fractions, only one out of three pupils was on the conceptual level in his/her thinking. This means that about 10% of pupils are able to understand the algebraic expression, which has the same isomorphic structure as the arithmetical expression. This finding is important because the ability to think innovatively is created when learning the basic concepts. Keywords: arithmetic, algebra, competence
Resumo:
In this study the researcher wanted to show the observed connection of mathematics and textile work. To carry this out the researcher designed a textbook by herself for the upper secondary school in Tietoteollisuuden Naiset TiNA project at Helsinki University of Technology (URL:http://tina.tkk.fi/). The assignments were designed as additional teaching material to enhance and reinforce female students confidence in mathematics and in the management of their textile work. The research strategy applied action research, out of which two cycles two have been carried out. The first cycle consists of establishing the textbook and in the second cycle its usability is investigated. The third cycle is not included in this report. In the second cycle of the action research the data was collected from 15 teachers, five textile teachers, four mathematics teachers and six teachers of both subjects. They all got familiar with the textbook assignments and answered a questionnaire on the basis of their own teaching experience. The questionnaire was established by applying the theories of usability and teaching material assessment study. The data consisted of qualitative and quantitative information, which was analysed by content analysis with computer assisted table program to either qualitative or statistical description. According to the research results, the textbook assignments seamed to be applied better to mathematics lessons than textile work. The assignments pointed out, however, the clear interconnectedness of textile work and mathematics. Most of the assignments could be applied as such or as applications in the upper secondary school textile work and mathematics lessons. The textbook assignments were also applicable in different stages of the teaching process, e.g. as introduction, repetition or to support individual work or as group projects. In principle the textbook assignments were in well placed and designed in the correct level of difficulty. Negative findings concerned some too difficult assignments, lack of pupil motivation and unfamiliar form of task for the teacher. More clarity for some assignments was wished for and there was especially expressed a need for easy tasks and assignments in geometry. Assignments leading to the independent thinking of the pupil were additionally asked for. Two important improvements concerning the textbook attainability would be to get the assignments in html format over the Internet and to add a handicraft reference book.
Resumo:
Quasiconformal mappings are natural generalizations of conformal mappings. They are homeomorphisms with 'bounded distortion' of which there exist several approaches. In this work we study dimension distortion properties of quasiconformal mappings both in the plane and in higher dimensional Euclidean setting. The thesis consists of a summary and three research articles. A basic property of quasiconformal mappings is the local Hölder continuity. It has long been conjectured that this regularity holds at the Sobolev level (Gehring's higher integrabilty conjecture). Optimal regularity would also provide sharp bounds for the distortion of Hausdorff dimension. The higher integrability conjecture was solved in the plane by Astala in 1994 and it is still open in higher dimensions. Thus in the plane we have a precise description how Hausdorff dimension changes under quasiconformal deformations for general sets. The first two articles contribute to two remaining issues in the planar theory. The first one concerns distortion of more special sets, for rectifiable sets we expect improved bounds to hold. The second issue consists of understanding distortion of dimension on a finer level, namely on the level of Hausdorff measures. In the third article we study flatness properties of quasiconformal images of spheres in a quantitative way. These also lead to nontrivial bounds for their Hausdorff dimension even in the n-dimensional case.
Resumo:
Malli on logiikassa käytetty abstraktio monille matemaattisille objekteille. Esimerkiksi verkot, ryhmät ja metriset avaruudet ovat malleja. Äärellisten mallien teoria on logiikan osa-alue, jossa tarkastellaan logiikkojen, formaalien kielten, ilmaisuvoimaa malleissa, joiden alkioiden lukumäärä on äärellinen. Rajoittuminen äärellisiin malleihin mahdollistaa tulosten soveltamisen teoreettisessa tietojenkäsittelytieteessä, jonka näkökulmasta logiikan kaavoja voidaan ajatella ohjelmina ja äärellisiä malleja niiden syötteinä. Lokaalisuus tarkoittaa logiikan kyvyttömyyttä erottaa toisistaan malleja, joiden paikalliset piirteet vastaavat toisiaan. Väitöskirjassa tarkastellaan useita lokaalisuuden muotoja ja niiden säilymistä logiikkoja yhdistellessä. Kehitettyjä työkaluja apuna käyttäen osoitetaan, että Gaifman- ja Hanf-lokaalisuudeksi kutsuttujen varianttien välissä on lokaalisuuskäsitteiden hierarkia, jonka eri tasot voidaan erottaa toisistaan kasvavaa dimensiota olevissa hiloissa. Toisaalta osoitetaan, että lokaalisuuskäsitteet eivät eroa toisistaan, kun rajoitutaan tarkastelemaan äärellisiä puita. Järjestysinvariantit logiikat ovat kieliä, joissa on käytössä sisäänrakennettu järjestysrelaatio, mutta sitä on käytettävä siten, etteivät kaavojen ilmaisemat asiat riipu valitusta järjestyksestä. Määritelmää voi motivoida tietojenkäsittelyn näkökulmasta: vaikka ohjelman syötteen tietojen järjestyksellä ei olisi odotetun tuloksen kannalta merkitystä, on syöte tietokoneen muistissa aina jossakin järjestyksessä, jota ohjelma voi laskennassaan hyödyntää. Väitöskirjassa tutkitaan minkälaisia lokaalisuuden muotoja järjestysinvariantit ensimmäisen kertaluvun predikaattilogiikan laajennukset yksipaikkaisilla kvanttoreilla voivat toteuttaa. Tuloksia sovelletaan tarkastelemalla, milloin sisäänrakennettu järjestys lisää logiikan ilmaisuvoimaa äärellisissä puissa.
Resumo:
A mathematics classroom is comprised of many mathematicians with varying understanding of mathematics knowledge, including the teacher, students and sometimes researchers. To align with this conceptualisation of knowledge and understanding, the multi-faceted teaching experiment will be introduced as an approach to study all classroom participants’ interactions with the shared knowledge of mathematics. Drawing on the experiences of a large curriculum project, it is claimed that, unlike a multi-tiered teaching experiment, the multi-faceted teaching experiment provides a research framework that allows for the study of mathematicians’ building of knowledge in a classroom without privileging the experience of any one participant.
Resumo:
The projection construction has been used to construct semifields of odd characteristic using a field and a twisted semifield [Commutative semi-fields from projection mappings, Designs, Codes and Cryptography, 61 (2011), 187{196]. We generalize this idea to a projection construction using two twisted semifields to construct semifields of odd characteristic. Planar functions and semifields have a strong connection so this also constructs new planar functions.
Resumo:
This chapter draws on a large data set of children's work samples collected as part of a five-year school reform project in a community of high poverty. One component of the data set from this project is a corpus of more than 2000 writing samples collected from students across eight grade levels (Prep to year 7) annually, across four years of the project (2009-2013). This paper utilises a selection of these texts to consider insights available to teachers and schools through a simple process of collecting and assessing writing samples produced by children over time. The focus is on what samples of writing might enable us to know and understand about learning and teaching this important dimension of literacy in current classrooms.
Resumo:
This paper describes the architecture of a multiprocessor system which we call the Broadcast Cube System (BCS) for solving important computation intensive problems such as systems of linear algebraic equations and Partial Differential Equations (PDEs), and highlights its features. Further, this paper presents an analytical performance study of the BCS, and it describes the main details of the design and implementation of the simulator for the BCS.
Resumo:
Complexity theory is an important and growing area in computer science that has caught the imagination of many researchers in mathematics, physics and biology. In order to reach out to a large section of scientists and engineers, the paper introduces elementary concepts in complexity theory in a informal manner, motivating the reader with many examples.
Resumo:
The existence of an optimal feedback law is established for the risk-sensitive optimal control problem with denumerable state space. The main assumptions imposed are irreducibility and a near monotonicity condition on the one-step cost function. A solution can be found constructively using either value iteration or policy iteration under suitable conditions on initial feedback law.
Resumo:
In this paper, we develop and analyze C(0) penalty methods for the fully nonlinear Monge-Ampere equation det(D(2)u) = f in two dimensions. The key idea in designing our methods is to build discretizations such that the resulting discrete linearizations are symmetric, stable, and consistent with the continuous linearization. We are then able to show the well-posedness of the penalty method as well as quasi-optimal error estimates using the Banach fixed-point theorem as our main tool. Numerical experiments are presented which support the theoretical results.
Resumo:
For a contraction P and a bounded commutant S of P. we seek a solution X of the operator equation S - S*P = (1 - P* P)(1/2) X (1 - P* P)(1/2) where X is a bounded operator on (Ran) over bar (1 - P* P)(1/2) with numerical radius of X being not greater than 1. A pair of bounded operators (S, P) which has the domain Gamma = {(z(1) + z(2), z(2)): vertical bar z(1)vertical bar < 1, vertical bar z(2)vertical bar <= 1} subset of C-2 as a spectral set, is called a P-contraction in the literature. We show the existence and uniqueness of solution to the operator equation above for a Gamma-contraction (S, P). This allows us to construct an explicit Gamma-isometric dilation of a Gamma-contraction (S, P). We prove the other way too, i.e., for a commuting pair (S, P) with parallel to P parallel to <= 1 and the spectral radius of S being not greater than 2, the existence of a solution to the above equation implies that (S, P) is a Gamma-contraction. We show that for a pure F-contraction (S, P), there is a bounded operator C with numerical radius not greater than 1, such that S = C + C* P. Any Gamma-isometry can be written in this form where P now is an isometry commuting with C and C. Any Gamma-unitary is of this form as well with P and C being commuting unitaries. Examples of Gamma-contractions on reproducing kernel Hilbert spaces and their Gamma-isometric dilations are discussed. (C) 2012 Elsevier Inc. All rights reserved.