852 resultados para Linear classifier
Resumo:
Speech signals are one of the most important means of communication among the human beings. In this paper, a comparative study of two feature extraction techniques are carried out for recognizing speaker independent spoken isolated words. First one is a hybrid approach with Linear Predictive Coding (LPC) and Artificial Neural Networks (ANN) and the second method uses a combination of Wavelet Packet Decomposition (WPD) and Artificial Neural Networks. Voice signals are sampled directly from the microphone and then they are processed using these two techniques for extracting the features. Words from Malayalam, one of the four major Dravidian languages of southern India are chosen for recognition. Training, testing and pattern recognition are performed using Artificial Neural Networks. Back propagation method is used to train the ANN. The proposed method is implemented for 50 speakers uttering 20 isolated words each. Both the methods produce good recognition accuracy. But Wavelet Packet Decomposition is found to be more suitable for recognizing speech because of its multi-resolution characteristics and efficient time frequency localizations
Resumo:
Speech processing and consequent recognition are important areas of Digital Signal Processing since speech allows people to communicate more natu-rally and efficiently. In this work, a speech recognition system is developed for re-cognizing digits in Malayalam. For recognizing speech, features are to be ex-tracted from speech and hence feature extraction method plays an important role in speech recognition. Here, front end processing for extracting the features is per-formed using two wavelet based methods namely Discrete Wavelet Transforms (DWT) and Wavelet Packet Decomposition (WPD). Naive Bayes classifier is used for classification purpose. After classification using Naive Bayes classifier, DWT produced a recognition accuracy of 83.5% and WPD produced an accuracy of 80.7%. This paper is intended to devise a new feature extraction method which produces improvements in the recognition accuracy. So, a new method called Dis-crete Wavelet Packet Decomposition (DWPD) is introduced which utilizes the hy-brid features of both DWT and WPD. The performance of this new approach is evaluated and it produced an improved recognition accuracy of 86.2% along with Naive Bayes classifier.
Resumo:
This paper presents the application of wavelet processing in the domain of handwritten character recognition. To attain high recognition rate, robust feature extractors and powerful classifiers that are invariant to degree of variability of human writing are needed. The proposed scheme consists of two stages: a feature extraction stage, which is based on Haar wavelet transform and a classification stage that uses support vector machine classifier. Experimental results show that the proposed method is effective
Resumo:
Speckle noise formed as a result of the coherent nature of ultrasound imaging affects the lesion detectability. We have proposed a new weighted linear filtering approach using Local Binary Patterns (LBP) for reducing the speckle noise in ultrasound images. The new filter achieves good results in reducing the noise without affecting the image content. The performance of the proposed filter has been compared with some of the commonly used denoising filters. The proposed filter outperforms the existing filters in terms of quantitative analysis and in edge preservation. The experimental analysis is done using various ultrasound images
Resumo:
In our study we use a kernel based classification technique, Support Vector Machine Regression for predicting the Melting Point of Drug – like compounds in terms of Topological Descriptors, Topological Charge Indices, Connectivity Indices and 2D Auto Correlations. The Machine Learning model was designed, trained and tested using a dataset of 100 compounds and it was found that an SVMReg model with RBF Kernel could predict the Melting Point with a mean absolute error 15.5854 and Root Mean Squared Error 19.7576
Resumo:
Increasing amounts of plastic waste in the environment have become a problem of gigantic proportions. The case of linear low-density polyethylene (LLDPE) is especially significant as it is widely used for packaging and other applications. This synthetic polymer is normally not biodegradable until it is degraded into low molecular mass fragments that can be assimilated by microorganisms. Blends of nonbiodegradable polymers and biodegradable commercial polymers such as poly (vinyl alcohol) (PVA) can facilitate a reduction in the volume of plastic waste when they undergo partial degradation. Further, the remaining fragments stand a greater chance of undergoing biodegradation in a much shorter span of time. In this investigation, LLDPE was blended with different proportions of PVA (5–30%) in a torque rheometer. Mechanical, thermal, and biodegradation studies were carried out on the blends. The biodegradability of LLDPE/PVA blends has been studied in two environments: (1) in a culture medium containing Vibrio sp. and (2) soil environment, both over a period of 15 weeks. Blends exposed to culture medium degraded more than that exposed to soil environment. Changes in various properties of LLDPE/PVA blends before and after degradation were monitored using Fourier transform infrared spectroscopy, a differential scanning calorimeter (DSC) for crystallinity, and scanning electron microscope (SEM) for surface morphology among other things. Percentage crystallinity decreased as the PVA content increased and biodegradation resulted in an increase of crystallinity in LLDPE/PVA blends. The results prove that partial biodegradation of the blends has occurred holding promise for an eventual biodegradable product
Resumo:
The main focus of the present study was to develop ideal low band gap D-A copolymers for photoconducting and non-linear optical applications. This chapter summarizes the overall research work done. Designed copolymers were synthesized via direct arylation or Suzuki coupling reactions. Copolymers were characterized by theoretical and experimental methods. The suitability of these copolymers in photoconducting and optical limiting devices has been investigated.The results suggest that the copolymers investigated in the present study have a good non-linear optical response and are comparable to or even better than the D-A copolymers reported in the literature and hence could be chosen as ideal candidates with potential applications for non-linear optics. The results also show that the structures of the polymers have great impact on NLO properties. Copolymers studied here exhibits good optical limiting property at 532 nm wavelength due to two-photon absorption (TPA) process. The results revealed that the two copolymers, (P(EDOT-BTSe) and P(PH-TZ)) exhibited strong two-photon absorption and superior optical power limiting properties, which are much better than that of others.
Resumo:
A fully numerical two-dimensional solution of the Schrödinger equation is presented for the linear polyatomic molecule H^2+_3 using the finite element method (FEM). The Coulomb singularities at the nuclei are rectified by using both a condensed element distribution around the singularities and special elements. The accuracy of the results for the 1\sigma and 2\sigma orbitals is of the order of 10^-7 au.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.