590 resultados para Ligas de niquel-titanio
Resumo:
The study of mechanical properties of high-alloy special steels is of great interest of the steel industry due to the great demand by companies that manufacture automotive components of high criticality, and also because of its high commercial value. However, the development of this type of alloy metals demand highly technical knowledge. Among these extremely important kinds of steel, the subject which is the interest of this study is the special steel modified by niobium. The manganese and niobium are the main alloying elements in the composition of these steels, both of them increase the stability of the austenite region, however, manganese increases the hardenability and tensile yield strength, and niobium increases the mechanical strength and promotes refining the grain. The mechanical characterization of steel SAE 1312 modified the niobium was made in order to gain a better understanding of the influence on the mechanical properties caused by aging at different temperatures and for different reductions in the drawing of gauge material. This characterization was made by means of tensile test and hardness. This material showed an increase in yield strength and hardness when gauge with large reductions during the wiredrawing, but when subjected to aging temperatures higher than 300 ° C had a slight loss of these properties
Resumo:
In this work a study about the mechanical properties of the API 5L X70 steel, with or without heat treating, has been made, with the intetion of assess the influence of cooling after the austenitization heat treating by air cooling (normalizing) and a rapid cooling with oil (tempering). This steel is known by high strength and ductility values and it is commonly used in the manufacture of oil pipes. The growing energy demand encouraged the study and manufacture of this material. Although this microalloyed dispense subsequent heat treatings, it was proven that its implementation is very advantageous for this type of application, improving hardness and plastic stability. It was also assessed that the faster the cooling rate is, the better will be these properties
Resumo:
The Mangabal Sul and Mangabal Norte mafic-ultramafic complexes are interpreted as intrusive stratiform bodies in the Goiás Magmatic Arc during the Brazilian cycle, being economically important for harboring significant amounts of nickel and copper sulfides. The main lithotypes of the complexes are gabbronorites, olivine gabbronorites, pyroxenites and peridotites, with variated degrees of deformation, recrystallization and metamorphism superimposed, with metamorphic peak of amphibolite to granulite facies evidenced mainly by the occurrence of coronitic olivine in metamafic rocks and the occurrence of syn-kinematic retrometamorphism associated with the development of the main foliation Sn. The Sn foliation planes show NE-SW preferential direction, consistent with the foliation direction of VIII the enclosing gneisses and schists, also concordant with the general elongation of mafic and ultramafic bodies displayed on map. The sulfide phase presents textures that indicate remobilization, associated with the occurrence of significant amounts of rutile within the ore which reinforces this idea. Along with the sulfides, the occurrence of expressive quantities of titanium oxides such as ilmenite and rutile, make the area more economically attractive. It can be suggested that the Mangabal Norte and Mangabal Sul complexes are contemporary, have the same genetic affinity and suffered the same deformational and metamorphic processes, evidenced by their structural and petrological similarities
Resumo:
The present work aims to study the characteristics of the alloy Al - 7 % Si - 0 , 3Mg ( AA356 ) , more specifically characterize the macrostructure and microstructure and mechanical properties of the alloy ingots AA356 obtained in metal molds and sand molds for power studying the structures through the difference of cooling rates . This alloy is explained by the fact of referring league has excellent combination of properties such as low solidification shrinkage and good fluidity, good weldability , high wear resistance , high strength to weight ratio, has wide application in general engineering , and particularly in the automotive and aerospace engineering . In this work we will verify this difference in properties through two different cooling rates . We monitor the solid solidification temperatures by thermocouples building with them the cooling curve as a tool that will aid us to evaluate the effectiveness of the grain refining because it achieved with some important properties of the alloy as the latent heat of solidification fraction the liquid and solid temperatures, the total solidification time, and identify the presence of inoculants for grain refinement. Thermal analysis will be supported by the study of graphic software “Origin “will be achieved where the cooling curve and its first derivative that is the cooling rate. Made thermal analysis, analysis will be made in macrographs ingots obtained for observation of macrostructures obtained in both types of ingots and also analysis of micrographs where sampling will occur in strategic positions ingots to correlate with the microstructure. Finally will be collecting data from Brinell hardness of ingots and so then correlating the properties of their respective ingots with cooling rate. We found that obtained with cast metal ingots showed superior properties to the ingots obtained with sand mold
Resumo:
The aim of this study is to characterize the macrostructure and microstructure of Al - 1%Si alloy obtained in sand and metallic molds. Aluminium has good mechanical properties, but adding silicon, even in small quantities, can change the microstructure and improves mechanical behavior. Workpieces were castings in metallic and sand molds and one can see a difference in their cooling curve, macroscopic and microscopic structures. The sand mold casting has lower cooling rate and so its grains are larger. Due to the lower concentration of grain boundary, the hardness is lower compared to that found in metallic molds, which has smaller grains and a higher hardness. Therefore, it can be concluded that the cooling rate and alloying elements affect the final microstructure of the workpiece
Resumo:
It is very important to study the macrostructure of a material in the crude state of solidification due to influence the mechanical properties, as well as the study of their cooling curve. In the present work was to study the alloy AA 356, its macrostructure and its cooling curve. The material was cast in two different molds, a sand and other metallic. In this paper we study the differences in its macrostructure and its cooling curves. In macrostructure can observe the absence of the three zones of solidification and the presence of large pores because of moisture in the sand. In the sample taken from the metal mold can observe the three zones of solidification: a coquilhada, columnar and equiaxed
Resumo:
To verify the levels of concentration of some heavy metals in fishes from Sorocaba river (São Paulo, Brazil) and evaluate if this contamination offers health risks to the fishermen, 63 samples of fishes collected from four points along the river were studied for cadmium, lead, chromium, nickel and mercury, with emphasis in this last, since it is the most toxic and most probable as a fish contaminant. Analyzing muscle samples by cold vapor atomic absorption spectrometry it was shown that the fishes are not contaminated. None of the five metals studied were present in prohibitive level and the fishes could be judged secure for human consume. It was also analyzed data from four years of cadmium, lead, chromium, nickel and mercury monitoring made by CETESB, from 1997 to 2000, in water from the main rivers of the State of São Paulo. The study pointed out that the majority of the monitored rivers still present contamination by those metals in a level that requires an improvement of the pollution control actions.
Resumo:
The aluminum includes several properties with excellent relation between weight and mechanical resistance. With technological advances, increasingly demand the development of new alloys and other production processes in order to reduce the cost of production and insert these new alloys in broader applications. The process of continuous caster (TRC promoted the unite of the aluminum smelting process with the first stage of rolling, making it most economical through the merger these two phases besides transform the continuous casting process. The AA8xxx series is one of the most versatile aluminum alloys and the most often used in continuous caster process provided a great potential application in the market. In order to further, optimize the process it is necessary to increase awareness of the aluminum solidification phenomena associated with the addition of grain refiner, and control of some aluminum production parameters in the process (production rate, metal temperature, etc.). In this study, AA8011 alloy samples were taken in the raw state obtained by the continuous casting process. The samples were laminated to a thickness of 7mm during the process itself and analyzed at three points along its width by microstructural analysis throughout its thickness, the variation rate of addition of the grain refiner in order to assess the influence of this addition with crystallographic formation and some formation of intermetallic precipitates during the solidification. Through this work, it was possible to improve the knowledge related to the addition of refiner with the monitoring of these production processes
Resumo:
The aluminium alloys are used in many fields because of their versatility combined with the excellent aluminium’s properties, mentioned in the study. This study aims to compare the performance of polished Hard Metal, Hard Metal covered with TiB2 and High Speed Steel (HSS) tools, at the aluminium 2024 alloy’s turning, as a function of variation of some turning parameters such as: feed, depth of cut and cutting speed; and study the surface finish and the required power during turning by processing the output data, like analyze the chip’s features for each used tool. The results provide information of the tool’s material effects, when submitted to different turning conditions, about the output variable in question. In this way, it was possible to notice that although the Hard Metal covered with TiB2 tool has provided the better surface finish, the chip’s features were better when the turning was accomplished by the Polished Hard Metal tool. In relation to the required turning’s power, the lowest consumption occurred with the High Speed Steel tool
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
This work approaches the main methods of plastic deformation of metals, with a focus on the deep drawing process. The mechanical properties were evaluated with the tension tests. It is presented the aluminum alloys designation, followed by applying heat treatments and the designation of tempers. The manufacture of aluminum beverage cans is described step by step, in general terms. The main objective is to analyze how different cans background geometries have great influence on the dome reversal. To be able to achieve the goal it was necessary to use cans of different manufacturers, which were used in buckle tests to obtain the reversal pressures, tensile tests and geometric analysis. Finally empirical equations were obtained correlating these variables, and it was observed that the conformation of reforming change significantly it's behavior
Resumo:
The industry generally has sought materials with high mechanical resistance, low density, thermal stability and corrosion resistance. In the aerospace industry, for example, the use of aluminum alloys, such as Al 2024-T351 and Al 7075-T7351, have become essential. However, the use of these materials often do not resulted in a satisfactory performance of the component, since the presence of cracks can cause total rupture of the component, even with a tension below the yield stress of the material, unexpectedly. In this work, these aluminum alloys were analyzed and samples were modeled by the finite element method. Moreover, in the models were applied two different types of cracks, central and edge crack, a vertical force was applied to result in a tension 70% of the yield stress of the material analyzed. Through stress asymptotic distribution in the region near the crack tip were calculated the values of the stress intensity factors for each crack length, after the stress intensity factors characterized were compared graphically with the values of fracture toughness found in the available literature
Resumo:
This work will address the study of fatigue conditions with constant load in an alloy of aluminum analysis 7475 - T761, so we can better understand the conditions of the aircrafts which contain this alloy in their structures. A literature review, which was discussed the concepts of fracture mechanics, fatigue, aeronautical components, chemical analysis of aluminum alloys, fatigue problems that appears in the aircrafts, metallographic analysis, and testing of optical microscopy tensile, fatigue and microhardness, surface analysis (MEV) study of the chemical composition of the alloy in question, the main causes of crashes, was performed, completing the work, analysis of data from tensile test, hardness and fatigue together with the interpretation of images of optical microscopy and scanning electron was taken. The data indicated the high mechanical strength of the alloy, along with its microstructure indicating elongated grains and high surface contour, which shows such resistance by hindering the movement of dislocations. The grooves are clearly shown in the MEV images as well as the classic with increased fatigue loading and subsequent reduction of the number of cycles to rupture behavior shown in the graphs. Therefore we observed the optimal behavior is supported by the league when subjected to fatigue loadings
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS