972 resultados para Laser induced poling
Resumo:
用热舟蒸发方法在不同的沉积速率下制备了LaF3单层膜,并对部分单层膜进行了真空退火。分别采用X射线衍射(XRD),Lambda 900 光谱仪和355 nm Nd∶YAG脉冲激光测试了薄膜的晶体结构、透射光谱和激光损伤阈值(LIDT),并通过透射光谱计算得到样品的折射率和消光系数。实验结果表明,增大沉积速率有利于LaF3薄膜的结晶和择优生长,可以提高薄膜的致密性和折射率,但薄膜的抗激光损伤能力有所下降;沉积速率太大,又会恶化薄膜的结晶性能,同时薄膜中产生大量孔洞,薄膜的机械强度降低,导致薄膜的折射率减小和
Resumo:
采用热舟蒸发方法沉积了氟化镁(MgF2)材料的单层膜,沉积温度从200℃上升到350℃,间隔为50℃。测量了样品的透射率和反射率光谱曲线,进行了表面粗糙度的标定,并在此基础上进行了光学损耗及散射损耗的计算。同时对355nm波长处的激光诱导损伤阈值进行了测量。结果表明:随着沉积温度的升高,光学损耗增加;在短波长范围散射损耗在光学损耗中所占比例很小,光学损耗的增加主要由吸收损耗引起;在355nm波长处的损伤阈值变化与吸收损耗的变化趋势相关,损伤机制主要是吸收起主导作用。样品的微缺陷密度也是影响损伤阈值的一个重要因素,损伤阈值随缺陷密度的增加而降低。
Resumo:
研究了电子束蒸发制备的HfO2/SiO2高反膜在1064nm与532nm激光辐照下的损伤行为。基频激光辐照时损伤形貌主要为节瘤缺陷喷溅留下的锥形坑。当能量密度较大时出现分层剥落;二倍频激光损伤主要是由电子缺陷引起的平底坑,辐照脉冲能量密度稍高时也会产生吸收性缺陷引起的锥形坑,但电子缺陷的损伤阈值更低;随着辐照脉冲能量密度的增大分层剥落逐渐成为主要的损伤形貌。分析认为,辐照激光波长的变化。引起吸收机制的变化从而导致了损伤阈值及损伤机制的差异。
Resumo:
用电子柬蒸发的方法在BK7玻璃上制备了ZrO2单层膜和ZrO2/SiO2高反膜,利用掺Ti:sapphire飞秒激光系统输出的中心波长为800nm,脉宽为50fs的激光脉冲对这两种样品进行了激光损伤阈值测试.实验结果表明,ZrO2单层膜的阂值比ZrO2/SiO2高反膜的高;这与传统的纳秒脉冲激光的损伤情况相反.利用光离化和碰撞离化激发电子到导带,形成电子等离子体基本模型并对此现象进行了解释.同时,用显微镜对样品的损伤形貌进行了观测,对损伤的特点进行了表征.
Resumo:
The effects of working pressure on properties of Al2O3 thin films are investigated. Transmittance of the Al2O3 thin film is measured by a Lambda 900 spectrometer. Laser-induced damage threshold (LIDT) is measured by a Nd:YAG laser at 355nm with a pulse width of 7ns. Microdefects were observed under a Nomarski microscope. The samples are characterized by optical properties and defect, as well as LIDT under the 355 nm Nd: YAG laser radiation. It is found that the working pressure has fundamental effect on the LIDT. It is the absorption rather than the microdefect that plays an important role on the LID T of Al2O3 thin film.
Resumo:
提出了一种用于提高介质减反膜的损伤阈值的新的方法,在H2.5L (H:HfO2, L:SiO2)的膜层与基底之间引入4个1/4光学厚度的SiO2薄膜,发现抗激光损伤阈值提高了50%,并且保持1064nm处的反射率低于0.09%。本文分析了造成这一提高的机制,一定厚度的氧化硅过渡层的引入是一种提高介质减反膜的损伤阈值的灵活有效的方法。
Resumo:
光学元件的破坏是限制高功率激光系统发展的主要问题,理解光学元件的破坏机制对于高功率激光系统的设计、运行参量选择以及器件技术发展有重要影响。以热辐射模型为基础研究了杂质吸收诱导光学薄膜破坏的热力过程。研究发现薄膜发生初始破坏所需时间很短,脉冲的大部分时间是引起薄膜发生更大的破坏。在考虑吸收杂质发生相变的情况下,计算了吸收杂质汽化对薄膜产生的蒸汽压力,论证了薄膜发生宏观破坏的可能性。此模型能很好地解释光学薄膜的平底坑破坏形貌。
Resumo:
Ta2O5薄膜采用传统的电子束蒸发方法沉积在BK7基底上。文中对SiO2保护层和退火对Ta2O5薄膜的激光损伤阈值的不同影响进行了研究。结果表明,SiO2保护层不会影响薄膜内的电场分布,薄膜微结构和微缺陷密度,但是会使薄膜的吸收稍微增大;而退火对降低薄膜的微缺陷密度和吸收较有效。SiO2保护层和退火都有利于提高Ta2O5薄膜的抗激光损伤能力,并且退火对提高阈值的影响更为明显。此外,采用SiO2保护层和退火结合的方法,获得了具有最大激光损伤阈值的薄膜。
Resumo:
采用电子束蒸发(EBE)和离子束溅射(IBS)制备了不同的Ta_2O_5薄膜,同时对电子束蒸发制备的薄膜进行了退火处理。研究了制备的Ta_2O_5薄膜的光学性能、激光损伤阈值(LIDT)、吸收、散射、粗糙度、微缺陷密度和杂质含量。结果表明,退火可使电子束蒸发制备的薄膜的光学性能得到改善,接近离子束溅射的薄膜的光学性能。电子束蒸发制备的薄膜的损伤阈值较低的主要原因在于吸收大,微缺陷密度和杂质含量高,而与薄膜的散射和粗糙度关系不大。退火后薄膜的吸收和微缺陷密度都明显降低,损伤阈值得到提高。退火后的薄膜损伤阈值仍然低于溅射得到的薄膜损伤阈值是因为退火并不能降低膜内的杂质含量,因此选用高纯度的蒸发膜料和减少电子束蒸发过程中的污染有可能进一步提高薄膜的损伤阈值。
Resumo:
LIMA (Laser-induced Ion Mass Analysis) is a new technique capable of compositional analysis of thin films and surface regions. Under UHV conditions a focused laser beam evaporates and ionizes a microvolume of specimen material from which a mass spectrum is obtained. LIMA has been used to examine a range of thin film materials with applications in electronic devices. The neutral photon probe avoids charging problems, and low conductivity materials are examined without prior metallization. Analyses of insulating silicon oxides, nitrides, and oxynitrides confirm estimates of composition from infrared measurements. However, the hydrogen content of hydrogenated amorphous silicon (a-Si : H) found by LIMA shows no correlation with values given by infrared absorption analysis. Explanations are proposed and discussed. © 1985.
Resumo:
Instability triggering and transient growth of thermoacoustic oscillations were experimentally investigated in combination with linear/nonlinear flame transfer function (FTF) methodology in a model lean-premixed gas turbine combustor operated with CH 4 and air at atmospheric pressure. A fully premixed flame with 10kW thermal power and an equivalence ratio of 0.60 was chosen for detailed characterization of the nonlinear transient behaviors. Flame transfer functions were experimentally determined by simultaneous measurements of inlet velocity fluctuations and heat release rate oscillations using a constant temperature anemometer and OH */CH * chemiluminescence emissions, respectively. The phase-resolved variation of the local flame structure at a limit cycle was measured by planar laser-induced fluorescence of OH. Simultaneous measurements of inlet velocity, OH */CH * emission, and acoustic pressure were performed to investigate the temporal evolution of the system from a stable to a limit cycle operation. This measurement allows us to describe an unsteady instability triggering event in terms of several distinct stages: (i) initiation of a small perturbation, (ii) exponential amplification, (iii) saturation, (iv) nonlinear evolution of the perturbations towards a new unstable periodic state, (v) quasi-steady low-amplitude periodic oscillation, and (vi) fully-developed high-amplitude limit cycle oscillation. Phase-plane portraits of instantaneous inlet velocity and heat release rate clearly show the presence of two different attractors. Depending on its initial position in phase space at infinitesimally small amplitude, the system evolves towards either a high-amplitude oscillatory state or a low-amplitude oscillatory state. This transient phenomenon was analyzed using frequency- and amplitude-dependent damping mechanisms, and compared to subcritical and supercritical bifurcation theories. The results presented in this paper experimentally demonstrate the hypothesis proposed by Preetham et al. based on analytical and computational solutions of the nonlinear G-equation [J. Propul. Power 24 (2008) 1390-1402]. Good quantitative agreement was obtained between measurements and predictions in terms of the conditions for the onset of triggering and the amplitude of triggered combustion instabilities. © 2011 The Combustion Institute.
Resumo:
The thermal imaging technique relies on the usage of infrared signal to detect the temperature field. Using temperature as a flow tracer, thermography is used to investigate the scalar transport in the shallow-water wake generated by an emergent circular cylinder. Thermal imaging is demonstrated to be a good quantitative flow visualization technique for studying turbulent mixing phenomena in shallow waters. A key advantage of the thermal imaging method over other scalar measurement techniques, such as the Laser Induced Fluorescence (LIF) and Planar Concentration Analysis (PCA) methods, is that it involves a very simple experimental setup. The dispersion characteristics captured with this technique are found to be similar to past studies with traditional measurement techniques. © 2012 Publishing House for Journal of Hydrodynamics.
Resumo:
Detailed experimental investigations of the amplitude dependence of flame describing functions (FDF) were performed using a stratified swirl-stabilized combustor, in order to understand the combustion-acoustic interactions of CH4/air flames propagating into nonhomogeneous reactant stoichiometry. Phase-synchronized OH planar laser induced fluorescence (OH PLIF) measurements were used to investigate local reaction zone structures of forced flames. To determine the amplitude-and frequency-dependent forced flame response, simultaneous measurements of inlet velocity and heat release rate oscillations were made using a constant temperature anemometer and photomultiplier tubes with narrow-band OH*/CH* interference filters. The measurements were made over a wide range of stratification ratios, including inner stream enrichment ( θ o>θ i) and outer stream enrichment ( θ o>θ i)) conditions, and compared to the baseline condition of spatially and temporally homogeneous cases ( θ o=θ i)). Results show that for the inlet conditions investigated, fuel stratification has a significant influence on local and global flame structures of unforced and forced flames. Under stratified conditions, length scales of local contours were found to be much larger than the homogeneous case due to high kinematic viscosities associated with high temperature. Stratification has a remarkable effect on flame-vortex interactions when the flame is subjected to high-amplitude acoustic forcing, leading to different evolution patterns of FDF (amplitude and disturbance convective time) in response to the amplitude of the imposed inlet velocity oscillation. The present experimental investigation reveals that intentional stratification has the potential to eliminate or suppress the occurrence of detrimental combustion instability problems in lean-premixed gas turbine combustion systems. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
A series of flames in a turbulent methane/air stratified swirl burner is presented. The degree of stratification and swirl are systematically varied to generate a matrix of experimental conditions, allowing their separate and combined effects to be investigated. Non-swirling flows are considered in the present paper, and the effects of swirl are considered in a companion paper (Part II). A mean equivalence ratio of φ=0.75 is used, with φ for the highest level of stratification spanning 0.375-1.125. The burner features a central bluff-body to aid flame stabilization, and the influence of the induced recirculation zone is also considered. The current work focuses on non-swirling flows where two-component particle image velocimetry (PIV) measurements are sufficient to characterize the main features of the flow field. Scalar data obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution allow the behavior of key combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. Simultaneous cross-planar OH-PLIF is used to determine the orientation of the instantaneous flame normal in the scalar measurement window, allowing gradients in temperature and progress variable to be angle corrected to their three dimensional values. The relationship between curvature and flame thickness is investigated using the OH-PLIF images, as well as the effect of stratification on curvature.The main findings are that the behavior of the key combustion species in temperature space is well captured on the mean by laminar flame calculations regardless of the level of stratification. H 2 and CO are significant exceptions, both appearing at elevated levels in the stratified flames. Values for surface density function and by extension thermal scalar dissipation rate are found to be substantially lower than laminar values, as the thickening of the flame due to turbulence dominates the effect of increased strain. These findings hold for both premixed and stratified flames. The current series of flames is proposed as an interesting if challenging set of test cases for existing and emerging turbulent flame models, and data are available on request. © 2012 The Combustion Institute.
Resumo:
Experimental results are presented from a series of turbulent methane/air stratified flames stabilized on a swirl burner. Nine operating conditions are considered, systematically varying the level of stratification and swirl while maintaining a lean global mean equivalence ratio of φ̄=0.75. Scalar data are obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution, allowing the behavior of the major combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. The corresponding three-dimensional surface density function and thermal scalar dissipation rate are investigated, along with geometric characteristics of the flame such as curvature and flame thickness. Hydrogen and carbon monoxide levels within the flame brush are raised by stratification, indicating models with laminar premixed flame chemistry may not be suitable for stratified flames. However, flame surface density, scalar dissipation and curvature all appear insensitive to the degree of stratification in the flames surveyed. © 2012 The Combustion Institute.