999 resultados para Laser Frequency Locking
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions.
Resumo:
In this study, oral carcinoma cells were used to evaluate chloroaluminum-phthalocyanine encapsulated in liposomes as the photosensitizer agent in support of photodynamic therapy (PDT). The genotoxicity and cytotoxicity behavior of the encapsulated photosensitizer in both dark and under irradiation using the 670-nm laser were investigated with the classical trypan blue cell viability test, the acridine orange/ethidium bromide staining organelles test, micronucleus formation frequency, DNA fragmentation, and cell morphology. The cell morphology investigation was carried out using light and electronic microscopes. Our findings after PDT include reduction in cell viability (95%) associated with morphologic alterations. The neoplastic cell destruction was predominantly started by a necrotic process, according to the assay with acridine orange and ethidium bromide, and this was confirmed by electronic microscopy analysis. Neither the PDT agent nor laser irradiation alone showed cytotoxicity, genotoxicity, or even morphologic alterations. Our results reinforce the efficiency of tight-irradiated chloroaluminum-phthalocyanine in inducing a positive effect of PDT. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the organic and inorganic constituents of healthy leaves and Candidatus Liberibacter asiaticus (CLas)-inoculated leaves of citrus plants. The bacteria CLas are one of the causal agents of citrus greening (or Huanglongbing) and its effect on citrus leaves was investigated using laser-induced breakdown spectroscopy (LIBS) combined with chemometrics. The information obtained from the LIBS spectra profiles with chemometrics analysis was promising for the construction of predictive models to identify healthy and infected plants. The major, macro- and microconstituents were relevant for differentiation of the sample conditions. The models were then applied to different inoculation times (from 1 to 8 months). The models were effective in the classification of 82-97% of the diseased samples with a 95% significance level. The novelty of this method was in the fingerprinting of healthy and diseased plants based on their organic and inorganic contents. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This study reports on the development and characterization of bovine serum albumin (BSA) nanospheres containing Silicon(IV) phthalocyanine (NzPc) and/or maghemite nanoparticles (MNP), the latter introduced via ionic magnetic fluid (MF). The nanosized BSA-loaded samples were designed for synergic application while combining Photodynamic Therapy and Hyperthermia. Incorporation of MNP in the albumin-based template, allowing full control of the magnetic content, was accomplished by adding a highly-stable ionic magnetic fluid sample to the albumin suspension, following heat denaturing. The material`s evaluation was performed using Zeta potential measurements and scanning electron microscopy. The samples were characterized by steady-state techniques and time-resolved fluorescence. The in vitro assay, using human fibroblasts, revealed no cytotoxic effect in all samples investigated, demonstrating the potential of the tested system as a synergistic drug delivery system.
Resumo:
PURPOSE: To compare changes in corneal hysteresis (CH) and the corneal resistance factor (CRF) in myopic and hyperopic laser in situ keratomileusis (LASIK) and evaluate their relationship to the number of photoablative pulses delivered, a surrogate for ablation volume. SETTING: Cleveland Clinic Cole Eye Institute, Cleveland, Ohio, USA. METHODS: Preoperative and 1-week postoperative Ocular Response Analyzer measurements in eyes that had femtosecond-assisted LASIK were studied retrospectively. Changes in CH and CRF were compared and tested for correlation with the number of excimer laser pulses. RESULTS: Thirteen myopic eyes and 11 hyperopic eyes were evaluated. Preoperative corneal thickness, CH, CRF, programmed correction magnitude, flap thickness, and total number of fixed spotsize photoablative pulses were similar in the 2 groups (P>.1). Decreases in CH and CRF were greater after myopic LASIK than after hyperopic LASIK (P<.005), and changes in CRF were correlated with the number of excimer laser pulses in the myopic group only (r = -0.63, P = .02). Regardless of ablation profile, changes in CH were more strongly correlated with preoperative CH values than with attempted ablation volume. CONCLUSIONS: With comparable flap thickness and attempted ablation volumes, myopic photoablation profiles were associated with greater decreases in CRF and CH than hyperopic profiles. Results indicate that preoperative corneal biomechanical status, ablation volume, and the spatial distribution of ablation are important factors that affect corneal resistance and viscous dissipative properties differently. Preferential tissue removal in the natively thicker paracentral cornea in hyperopia may partially account for the rarity of ectasia after hyperopic LASIK.
Resumo:
Background/Aims: The use of low-level laser therapy (LLLT) in neurosurgery is still hardly disseminated and there are situations in which the effects of this therapeutic tool would be extremely relevant in this medical field. The aim of the present study is to analyze the effect of LLLT on tissue repair after the corrective surgical incision in neonates with myelomeningocele, in an attempt to diminish the incidence of postoperative dehiscences following surgical repair performed immediately after birth. Materials and Methods: Prospective pilot study with 13 patients submitted to surgery at birth who received adjuvant treatment with LLLT (group A). A diode laser CW, lambda = 685 nm, p = 21 mW, was applied punctually along the surgical incision, with 0.19 J delivered per point, accounting for a total of 4-10 J delivered energy per patient, according to the surgical wound area and then compared with the results obtained in 23 patients who underwent surgery without laser therapy (group B). Results: This pilot study disclosed a significant decline in dehiscences of the surgical wounds in neonates who were submitted to LLLT (7.69 vs. 17.39%). Conclusion: This new adjuvant therapeutic modality with LLLT aided the healing of surgical wounds, preventing morbidities, as well as shortening the period of hospital stay, which implies a reduction of costs for patients and for the institution. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Vagal Denervation and Neurally Mediated Syncope. A 15-year-old female patient presented with frequent episodes of vasovagal syncope refractory to non-pharmacological and pharmacological measures. Two tilt-table tests performed before and after conventional therapy were positive and reproduced the patient`s clinical symptoms. Selective vagal denervation, guided by HFS, was performed. Six radiofrequency pulses were applied on the left and right sides of the interatrial septum, abolishing vagal responses at these locations. Basal sinus node and Wenckebach cycle lengths changed significantly following ablation. A tilt test performed after denervation was negative and revealed autonomic tone modification. The patient reported significant improvement in quality of life and remained asymptomatic for 9 months after denervation. After this period, three episodes of NMS occurred during a 4-month interval and a tilt test performed 11 months after the procedure demonstrated vagal activity recovery. (J Cardiovasc Electrophysiol, Vol. 20, pp. 558-563, May 2009).
Resumo:
PURPOSE: To evaluate laser combined with intravitreal triamcinolone acetonide (IVTA) for the management of patients with proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME). DESIGN: Randomized clinical trial. METHODS: SETTINGS: Single center. STUDY POPULATION: Twenty-two patients with bilateral treatment,naive moderate PDR and CSME. INTERVENTION: Laser (panretinal and macular) photocoagulation was performed in each eye, followed by IVTA in one randomly assigned eye. Best,corrected visual acuity (BCVA), fundus photography, and optical coherence tomography were performed at baseline and at months 1, 3, 6, 9, and 12. MAIN OUTCOME MEASURES:. Changes in BCVA, central macular thickness (CMT), and total macular volume (TMV). RESULTS: The mean logarithm of the minimal angle of resolution (logMAR) BCVA improved significantly, and mean CMT and TMV were significantly reduced in the IVTA group compared with the laser,only group (controls) at all study follow-up visits (P < .001). The mean logMAR BCVA (Snellen equivalent) was 0.44 (20/50(-2)) for the IVTA group and 0.38 (20/50(+1)) for the controls at baseline, and 0.12 (20/25(-1)) for the IVTA group and 0.32 (20/40(-1)) for the controls at 12 months (P < .001.). The mean CMT and TMV were, respectively, 360 mu m and 8.59 mm(3) for the IVTA group and 331 mu m and 8.44 mm(3) for the controls at baseline, and 236 mu m and 7.32 mm(3) for the IVTA group and 266 mu m and 7.78 mm(3) for the controls at 12 months (P < .001). CONCLUSIONS: The combination of laser photocoagulation with IVTA was associated with improved BCVA and decreased CMT and TMV when compared with laser photocoagulation alone for the treatment of moderate PDR with CSME. (Am J Ophthalmol 2009;147:291-297. (C) 2009 by Elsevier Inc. All rights reserved.)
Resumo:
This study analyzed the genotype distribution and frequency of lamivudine (LAM) and tenofovir (TDF) resistance mutations in a group of patients co-infected with HIV and hepatitis B virus (HBV). A cross-sectional study of 847 patients with HIV was conducted. Patients provided blood samples for HBsAg detection. The load of HBV was determined using an ""in-house"" real-time polymerase chain reaction. HBV genotypes/subgenotypes, antiviral resistance, basal core promoter (BCP), and precore mutations were detected by DNA sequencing. Twenty-eight patients with co-infection were identified. The distribution of HBV genotypes among these patients was A (n = 9; 50%), D (n = 4; 22.2%), G (n = 3; 16.7%), and F (n = 2; 11.1%). Eighteen patients were treated with LAM and six patients were treated with LAM plus TDF. The length of exposure to LAM and TDF varied from 4 to 216 months. LAM resistance substitutions (rtL180M + rtM204V) were detected in 10 (50%) of the 20 patients with viremia. This pattern and an accompanying rtV173L mutation was found in four patients. Three patients with the triple polymerase substitution pattern (rtV173L+ rtL180M + rtM204V) had associated changes in the envelope gene (sE164D + sl195M). Mutations in the BCP region (A1762T, G1764A) and in the precore region (G1896A, G1899A) were also found. No putative TDF resistance substitution was detected. The data suggest that prolonged LAM use is associated with the emergence of particular changes in the HBV genome, including substitutions that may elicit a vaccine escape phenotype. No putative TDF resistance change was detected after prolonged use of TDF. J. Med. Virol. 82:1481-1488, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The technical reliability (i.e., interinstrument and interoperator reliability) of three SEAC-swept frequency bioimpedance monitors was assessed for both errors of measurement and associated analyses. In addition, intraoperator and intrainstrument variability was evaluated for repeat measures over a 4-hour period. The measured impedance values from a range of resistance-capacitance circuits were accurate to within 3% of theoretical values over a range of 50-800 ohms. Similarly, phase was measured over the range 1 degrees-19 degrees with a maximum deviation of 1.3 degrees from the theoretical value. The extrapolated impedance at zero frequency was equally well determined (+/-3%). However, the accuracy of the extrapolated value at infinite frequency was decreased, particularly at impedances below 50 ohms (approaching the lower limit of the measurement range of the instrument). The interinstrument/operator variation for whole body measurements were recorded on human volunteers with biases of less than +/-1% for measured impedance values and less than 3% for phase. The variation in the extrapolated values of impedance at zero and infinite frequencies included variations due to operator choice of the analysis parameters but was still less than +/-0.5%. (C) 1997 Wiley-Liss, Inc.
Resumo:
A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.
Resumo:
The technique of frequency-resolved optical gating is used to characterize the intensity and the phase of picosecond pulses after propagation through 700 m of fiber at close to the zero-dispersion wavelength. Using the frequency-resolved optical gating technique, we directly measure the severe temporal distortion resulting from the interplay between self-phase modulation and higher-order dispersion in this regime. The measured intensity and phase of the pulses after propagation are found to be in good agreement with the predictions of numerical simulations with the nonlinear Schrodinger equation. (C) 1997 Optical Society of America.
Resumo:
Brain injury is responsible for significant morbidity and mortality in trauma patients, but controversy still exists over therapeutic management for these patients. The objective of this study was to analyze the effect of phototherapy with low intensity lasers on local and systemic immunomodulation following cryogenic brain injury. Laser phototherapy was applied (or not-controls) immediately after cryogenic brain injury performed in 51 adult male Wistar rats. The animals were irradiated twice (3 h interval), with continuous diode laser (gallium-aluminum-arsenide (GaAlAs), 780 nm, or indium-gallium-aluminum-phosphide (InGaAlP), 660 nm) in two points and contact mode, 40 mW, spot size 0.042 cm(2), 3 J/cm(2) and 5 J/cm(2) (3 s and 5 s, respectively). The experimental groups were: Control (non-irradiated), RL3 (visible red laser/ 3 J/cm(2)), RL5 (visible red laser/5 J/cm(2)), IRL3 (infrared laser/ 3 J/cm(2)), IRL5 (infrared laser/5 J/cm(2)). The production of interleukin-1IL-1 beta (IL-1 beta), interleukin6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-alpha) was analyzed by enzyme immunoassay technique (ELISA) test in brain and blood samples. The IL-1 beta concentration in brain of the control group ;was significantly reduced in 24 h (p < 0.01). This reduction was also observed in the RL5 and IRL3 groups. The TNF-alpha and IL-6 concentrations increased significantly (p < 0.01 and p < 0.05, respectively) in the blood of all groups, except by the IRL3 group. The IL-6 levels in RL3 group were significantly smaller than in control group in both experimental times. IL-10 concentration was maintained stable in all groups in brain and blood. Under the conditions of this study, it is possible to conclude that the laser phototherapy can affect TNF-alpha, IL-1 beta and IL-6 levels in the brain and in circulation in the first 24 h following cryogenic brain injury. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The spatial and temporal evolution of a depleted atomic distribution created by laser enhanced ionisation (LEI) was employed to determine both a diffusion coefficient for sodium (Na) and an electron (e(-)) and sodium ion recombination rate coefficient in an analytical air-C2H2 flame. A depleted distribution of neutral sodium atoms was produced in a flame by ionising approximately 80% of the irradiated sodium atoms in a well defined region using a two step LEI excitation scheme. Following depletion by ionisation, planar laser induced fluorescence (PLIF) images of the depleted region recorded the diffusion and decay of the depleted Na distribution for different depletion-probe delays. From measurements of the diffused width of the distribution, an accurate diffusion coefficient D = (1.19 +/- 0.03) x 10(-3) m(2) s(-1) for Na was determined in teh burnt gases of the flame. Measurements of the integrated fluorescence intensity in the depleted region for different depletion-probe delays were related to an increase in atomic sodium concentration caused by electron-ion recombination. At high concentrations (greater than or equal to 50 mu g ml(-1)), where the electron and ion concentrations in the depleted region were assumed equal, a recombination rate coefficient of 4.2 x 10(-9) cm(3) s(-1) was calculated. (C) 1997 Elsevier Science B.V.