980 resultados para Langmuir-Schaefer (LS)
A simplified kinetic model for oxidative dehydrogenation of ethylbenzene over Pd-NaBr/Al2O3 catalyst
Resumo:
The oxidative dehydrogenation of ethylbenzene is gaining considerable importance in recent years as a promising alternative for styrene production. This vapour phase reaction has been studied over Pd-NaBr/Al2O3 catalyst in the temperature range 623-793 K in a fixed bed reactor. Kinetic analysis of this reaction has been done using a recursion procedure developed in this work from first principles. The advantage of this method is the absence of any restriction on the conversion level as it uses an integrated rate equation. The rate of styrene formation was found to follow a linear relationship with concentration of ethylbenzene and shows a Langmuir type dependence on the concentration of oxygen.
Resumo:
The processing map for hot working of Al alloy 2014-20vol.%Al2O3 particulate-reinforced cast-plus-extruded composite material has been generated covering the temperature range 300-500 degrees C and the strain rate range 0.001-10 s(-1) based on the dynamic materials model. The efficiency eta of power dissipation given by 2m/(m + 1), where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of superplasticity has been identified, with a peak efficiency of 62% occurring at 500 degrees C and 0.001 s(-1). The characteristics of this domain have been studied with the help of microstructural evaluation and hot-ductility measurements. Microstructural instability is predicted at higher strain rates above (ls(-1)) and lower temperatures (less than 350 degrees C).
Resumo:
The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)(2), with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x >= 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of similar to 27 angstrom. At lower packing densities (x < 0.2) the surfactant chains form a monolayer with the alkyl chains oriented flat in the galleries with an interlayer spacing of similar to 8 angstrom. For the in between compositions, 0.2 <= x < 0.3, the material is biphasic. MD simulations were performed to understand how the anchoring density of the intercalated surfactant chains in the Mg-Al LDH-DDS affects the organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.
Resumo:
The interaction of CO with Cu, Pd, and Ni at different coverages of the metals on solid substrates has been investigated by He II and core-level spectroscopies, after the nature of variation of the metal core-level binding energies with the coverage or the cluster size is established. The separation between the (1 pi + 5 sigma) and 4 sigma levels of CO increases with a decrease in the size of the metal clusters, accompanied by an increase in the desorption temperature. In the case of Cu, the intramolecular shakeup satellite of CO disappears on small clusters. More importantly, CO dissociates on small Ni clusters, clearly confirming that metal-CO interaction strength increases with a decrease in the cluster size.
Resumo:
Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.
Resumo:
While the adsorption of dioxygen at a clean Ni(110) surface gives rise to two O(1s) features at 531 and 530 eV assigned to O-(a) and O2-(a) type species respectively, coadsorption of dioxygen and water mixtures result in the additional formation of hydroxyl species characterized by an O(1s) peak at 532.3 eV. The latter is attributed to the oxygen induced dissociation of water via a low energy pathway involving the O-(a)-type species. The proportions of the O-(a) and the hydroxyl species are greater for small O-2/H2O ratios and lower temperatures (120 K). With increase in temperature, the relative surface concentrations of the O-(a) and the hydroxyl species decrease while there is an increase in the concentration of the oxidic O2-(a) species. Thus, the surface concentrations of both the hydroxyl and the O2-(a) species depend critically on the presence of O- type species. Above 300K the surface chemistry in the main involves the conversion of O- to O2- species via the hydroxyl species.
Resumo:
Tetragonal ZrO2 was synthesized by the solution combustion technique using glycine as the fuel. The compound was characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, and BET surface area analysis. The ability of this compound to adsorb dyes was investigated, and the compound had a higher adsorption capacity than commercially activated carbon. Infrared spectroscopic observations were used to determine the various interactions and the groups responsible for the adsorption activity of the compound. The effects of the initial concentration of the dye, temperature, adsorbent concentration, and pH of the solution were studied. The kinetics of adsorption was described as a first-order process, and the relative magnitudes of internal and external mass transfer processes were determined. The equilibrium adsorption was also determined and modeled by a composite Langmuir-Freundlich isotherm.
Resumo:
At the heart of understanding cellular processes lies our ability to explore the specific nature of communication between sequential information carrying biopolymers. However, the data extracted from conventional solution phase studies may not reflect the dynamics of communication between recognized partners as they occur in the crowded cellular milieu. We use the principle of immobilization of histidine-tagged biopolymers at a Ni(II)-encoded Langmuir monolayer to study sequence-specific protein-protein interactions in an artificially crowded environment The advantage of this technique lies in increasing the surface density of one of the interacting partners that allows us to study macromolecular interactions in a controlled crowded environment, but without compromising the speed of the reactions. We have taken advantage of this technique to follow the sequential assembly process of the multiprotein complex Escherichia coil RNA polymerase at the interface and also deciphered the role of one of the proteins, omega (omega), in the assembly pathway. Our reconstitution studies indicate that in the absence of molecular chaperones or other cofactors, omega (omega) plays a decisive role in refolding the largest protein beta prime (beta') and its recruitment into the multimeric assembly to reconstitute an active RNA polymerase. It was also observed that the monolayer had the ability to distinguish between sequence-specific and -nonspecific interactions despite the immobilization of one of the biomacromolecules. The technique provides a universal two-dimensional template for studying protein-ligand interactions while mimicking molecular crowding.
Resumo:
Four new (dialkylamino)pyridine-functionalized surfactants have been synthesized. Micelles were generated either from the surfactant alone in aqueous buffer (pH 8.5 or 9.0) or by comicellization in 1 x 10(-3)-1 x 10(-4) M aqueous micellar cetyltrimethylammonium bromide (CTABr) solution at pH 8.5 or 9.0. Such aggregates were used to cleave p-nitrophenyl alkanoates or p-nitrophenyl diphenylphosphate. The nucleophilic reagents and the second-order ''catalytic'' rate constants toward esterolysis of the substrate p-nitrophenyl octanoate (at 25 degrees C, pH 9.0) were [cat.] = 1 x 10(-4) M, [CTABr] = 1 x 10(-3) M, and k(cat.) = 440.13 M(-1) s(-1) for 1b, [cat.] = 5 x 10(-4) M, [CTABr] = 5 x 10(-4) M, and k(cat.) = 30.8 M(-1) s(-1) for 1c, [cat.] = 5 x 10(-4) M, [CTABr] = 5 x 10(-3) M, and k(cat.) = 183.64 M(-1) s(-1) for 2a, and [cat.] = 3 x 10(-4) M and k(cat.) = 54.1 M(-1) s(-1) for 2b. The catalytic systems, especially 1b/CTABr and 2a/CTABr, also conferred significantly greater reactivity toward the esters derived from alkanoic acids of moderate chain length (C-6-C-10) during hydrolytic cleavages relative to their shorter and longer counterparts. Importantly, the catalytic systems comprising the coaggregates of either neutral 1b and CTABr (1:10) or anionic 2a and CTABr (1:10) conformed to the Michaelis-Menten kinetic scheme and demonstrated turnover behavior in the presence of excess substrate.
Resumo:
In order to elucidate the role of the linkage region that connects polar headgroups with hydrophobic segments in a lipid monomer, cationic mixed-chain amphiphiles containing acyl and alkyl hydrophobic segments connected at the level of Me(2)N(+) headgroups 2a-d were synthesized. Related dialkyldimethyl-ammonium ion surfactants 1a-e and diacyl systems 3a-c were also synthesized. Despite mismatch in the connector region, amphiphiles 2a-d form bilayer vesicles like their dialkyl and diacyl counterparts, as revealed by electron microscopy. Introduction of an ester connector function between the polar and hydrophobic parts raises the phase transition temperature (T-m), transition enthalpies, and resistance to ion permeation. Consideration of energy minimized conformations points toward the importance of differences in the depth of chain penetration into the putative bilayer.
Resumo:
A model of the precipitation process in reverse micelles has been developed to calculate the size of fine particles obtained therein. While the method shares several features of particle nucleation and growth common to precipitation in large systems, complexities arise in describing the processes of nucleation, due to the extremely small size of a micelle and of particle growth caused by fusion among the micelles. Occupancy of micelles by solubilized molecules is governed by Poisson statistics, implying most of them are empty and cannot nucleate of its own. The model therefore specifies the minimum number of solubilized molecules required to form a nucleus which is used to calculate the homogeneous nucleation rate. Simultaneously, interaction between micelles is assumed to occur by Brownian collision and instantaneous fusion. Analysis of time scales of various events shows growth of particles to be very fast compared to other phenomena occurring. This implies that nonempty micelles either are supersaturated or contain a single precipitated particle and allows application of deterministic population balance equations to describe the evolution of the system with time. The model successfully predicts the experimental measurements of Kandori ct al.(3) on the size of precipitated CaCO3 particles, obtained by carbonation of reverse micelles containing aqueous Ca(OH)(2) solution.
Resumo:
Aqueous phase oxidation of sulphur dioxide at low concentrations catalysed by a PVP-Cu complex in the solid phase and dissolved Cu(II) in the liquid phase is studied in a rotating catalyst basket reactor (RCBR). The equilibrium adsorption of Cu(II) and S(VI) on PVP particles is found to be of the Langmuir-type. The diffusional effects of S(IV) species in PVP-Cu resin are found to be insignificant whereas that of product S(VI) are found to be significant. The intraparticle diffusivity of S(VI) is obtained from independent tracer experiments. In the oxidation reaction HSO3- is the reactive species. Both the S(IV) species in the solution, namely SO2(aq) and HSO3- get adsorbed onto the active PVP-Cu sites of the catalyst, but only HSO3- undergoes oxidation. A kinetic mechanism is proposed based on this feature which shows that SO2(aq) has a deactivating effect on the catalyst. A rate model is developed for the three-phase reaction system incorporating these factors along with the effect of concentration of H2SO4 on the solubility of SO2 in the dilute aqueous solutions of Cu(II). Transient oxidation experiments are conducted at different conditions of concentration of SO2 and O-2 in the gas phase and catalyst concentration, and the rate parameters are estimated from the data. The observed and calculated profiles are in very good agreement. This confirms the deactivating effect of nonreactive SO2(aq) on the heterogeneous catalysis.
Resumo:
A novel series of vesicle-forming ion-paired amphiphiles, bis(hexadecyldimethylammonium)alkane dipalmitate (1a-1h), containing four chains were synthesized with two isolated headgroups. In each of these amphiphiles, the two headgroup charges are separated by a flexible polymethylene spacer chain -[(CH2)(m)]- of varying lengths (m) such that the length and the conformation of the spacer chain determine the intra-"monomer" headgroup separation. Transmission electron microscopy indicated that each of these forms bilayer membranes upon dispersion in aqueous media. The vesicular properties of these aggregates have been examined by differential scanning calorimetry and temperature-dependent fluorescence anisotropy measurements. Interestingly, their T-m values decreased with the increase in the m value. Thus while the apparent T-m of the lipid with m = 2 (1a) is 74.1 degrees C, the corresponding value observed for the lipid with m = 12 (1h) is 38.9 degrees C. The fluorescence anisotropy values (r) for 1b-1g were quite high (r similar to 0.3) compared to that of 1h (r similar to 0.23) at 20-30 degrees C in their gel states. On the other hand, the r value for vesicular 1b beyond melting was higher (0.1) compared to any of those for 1c-1h (similar to 0.04-0.06). X-ray diffraction of the cast films was performed to understand the nature and the thickness of these membrane organizations. The membrane widths ranged from 30 to 51 A as the m values varied. The entrapment of a small water-soluble solute, riboflavin, by the individual vesicular aggregates, and their sustenance: under an imposed transmembrane pH gradient have also been examined. These results show that all lipid vesicles entrap riboflavin and that generally the resistance to OH- permeation decreases with the increase in m value. Finally,all the above observations were comparatively analyzed, and on the basis of the calculated structures of these lipids, it was possible to conclude that membrane propel-ties can be modulated by spacer chain length variation of the ion-paired amphiphiles.
Resumo:
Novel cationic and neutral analogues of bile acids (1-6) were synthesized and their aggregation properties studied. Cations 1 and 2 formed thermoreversible gels in aqueous salt solutions, whereas neutral 4 formed gels in water in the presence of organic solvents such as ethanol, methanol, DMSO, and DMF. The gels derived from 1 and 4 have been investigated by SEM and with pyrene as a fluorescent probe.