523 resultados para Landsat
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.
Resumo:
In this article, we present a map of the glacial geomorphology of the Altai andWestern Sayan Mountains, covering an area of almost 600,000 km2. Although numerous studies provide evidence for restricted Pleistocene glaciations in this area, others have hypothesized the past existence of an extensive ice sheet. To provide a framework for accurate glacial reconstructions of the Altai and Western Sayan Mountains, we present a map at a scale of 1:1,000,000 based on a mapping from 30 m resolution ASTER DEM and 15 m/30 mresolution Landsat ETM+ satellite imagery. Four landform classes have been mapped: marginal moraines, glacial lineations, hummocky terrain, and glacial valleys. Our mapping reveals an abundance of glacial erosional and depositional landforms. The distribution of these glacial landforms indicates that the Altai and Western Sayan Mountains have experienced predominantly alpine-style glaciations, with some small ice caps centred on the higher mountain peaks. Large marginal moraine complexes mark glacial advances in intermontane basins. By tracing the outer limits of present-day glaciers, glacial valleys, and moraines, we estimate that the past glacier coverage have totalled to 65,000 km2 (10.9% of the mapped area), whereas present-day glacier coverage totals only 1300 km2 (0.2% of the mapped area). This demonstrates the usefulness of remote sensing techniques for mapping the glacial geomorphology in remote mountain areas and for quantifying the past glacier dimensions. The glacial geomorphological map presented here will be used for further detailed reconstructions of the paleoglaciology and paleoclimate of the region.
Resumo:
The number of remote sensing platforms and sensors rises almost every year, yet much work on the interpretation of land cover is still carried out using either single images or images from the same source taken at different dates. Two questions could be asked of this proliferation of images: can the information contained in different scenes be used to improve the classification accuracy and, what is the best way to combine the different imagery? Two of these multiple image sources are MODIS on the Terra platform and ETM+ on board Landsat7, which are suitably complementary. Daily MODIS images with 36 spectral bands in 250-1000 m spatial resolution and seven spectral bands of ETM+ with 30m and 16 days spatial and temporal resolution respectively are available. In the UK, cloud cover may mean that only a few ETM+ scenes may be available for any particular year and these may not be at the time of year of most interest. The MODIS data may provide information on land cover over the growing season, such as harvest dates, that is not present in the ETM+ data. Therefore, the primary objective of this work is to develop a methodology for the integration of medium spatial resolution Landsat ETM+ image, with multi-temporal, multi-spectral, low-resolution MODIS \Terra images, with the aim of improving the classification of agricultural land. Additionally other data may also be incorporated such as field boundaries from existing maps. When classifying agricultural land cover of the type seen in the UK, where crops are largely sown in homogenous fields with clear and often mapped boundaries, the classification is greatly improved using the mapped polygons and utilising the classification of the polygon as a whole as an apriori probability in classifying each individual pixel using a Bayesian approach. When dealing with multiple images from different platforms and dates it is highly unlikely that the pixels will be exactly co-registered and these pixels will contain a mixture of different real world land covers. Similarly the different atmospheric conditions prevailing during the different days will mean that the same emission from the ground will give rise to different sensor reception. Therefore, a method is presented with a model of the instantaneous field of view and atmospheric effects to enable different remote sensed data sources to be integrated.
Resumo:
The Alborz Mountain range separates the northern part of Iran from the southern part. It also isolates a narrow coastal strip to the south of the Caspian Sea from the Central Iran plateau. Communication between the south and north until the 1950's was via two roads and one rail link. In 1963 work was completed on a major access road via the Haraz Valley (the most physically hostile area in the region). From the beginning the road was plagued by accidents resulting from unstable slopes on either side of the valley. Heavy casualties persuaded the government to undertake major engineering works to eliminate ''black spots" and make the road safe. However, despite substantial and prolonged expenditure the problems were not solved and casualties increased steadily due to the increase in traffic using the road. Another road was built to bypass the Haraz road and opened to traffic in 1983. But closure of the Haraz road was still impossible because of the growth of settlements along the route and the need for access to other installations such as the Lar Dam. The aim of this research was to explore the possibility of applying Landsat MSS imagery to locating black spots along the road and the instability problems. Landsat data had not previously been applied to highway engineering problems in the study area. Aerial photographs are better in general than satellite images for detailed mapping, but Landsat images are superior for reconnaissance and adequate for mapping at the 1 :250,000 scale. The broad overview and lack of distortion in the Landsat imagery make the images ideal for structural interpretation. The results of Landsat digital image analysis showed that certain rock types and structural features can be delineated and mapped. The most unstable areas comprising steep slopes, free of vegetation cover can be identified using image processing techniques. Structural lineaments revealed from the image analysis led to improved results (delineation of unstable features). Damavand Quaternary volcanics were found to be the dominant rock type along a 40 km stretch of the road. These rock types are inherently unstable and partly responsible for the difficulties along the road. For more detailed geological and morphological interpretation a sample of small subscenes was selected and analysed. A special developed image analysis package was designed at Aston for use on a non specialized computing system. Using this package a new and unique method for image classification was developed, allowing accurate delineation of the critical features of the study area.
Resumo:
The research compares the usefullness of four remote sensing information sources, these being LANDSAT photographic prints, LANDSAT computer compatible tapes, Metric Camera and SIR-A photographic prints. These sources provide evaluations of the catchment characteristics of the Belize and Sibun river basins in Central America. Map evaluations at 1:250,000 scale are compared to the results of the same scale, remotely sensed information sources. The values of catchment characteristics for both maps and LANDSAT prints are used in multiple regression analysis, providing flood flow formulae, after investigations to provide a suitable dependent variable discharge series are made for short term records. The use of all remotely sensed information sources in providing evaluations of catchment characteristics is discussed. LANDSAT prints and computer compatible tapes of a post flood scene are used to estimate flood distributions and volumes. These are compared to values obtained from unit hydrograph analysis, using the dependent discharge series and evaluate the probable losses from the Belize river to the floodplain, thereby assessing the accuracy of LANDSAT estimates. Information relating to flood behaviour is discussed in terms of basic image presentation as well as image processing. A cost analysis of the purchase and use of all materials is provided. Conclusions of the research indicate that LANDSAT print material may provide information suitable for regression analysis at levels of accuracy as great as those of topographic maps, that the differing information sources are uniquely applicable and that accurate estimates of flood volumes may be determined even by post flood imagery.
Resumo:
Tonal, textural and contextual properties are used in manual photointerpretation of remotely sensed data. This study has used these three attributes to produce a lithological map of semi arid northwest Argentina by semi automatic computer classification procedures of remotely sensed data. Three different types of satellite data were investigated, these were LANDSAT MSS, TM and SIR-A imagery. Supervised classification procedures using tonal features only produced poor classification results. LANDSAT MSS produced classification accuracies in the range of 40 to 60%, while accuracies of 50 to 70% were achieved using LANDSAT TM data. The addition of SIR-A data produced increases in the classification accuracy. The increased classification accuracy of TM over the MSS is because of the better discrimination of geological materials afforded by the middle infra red bands of the TM sensor. The maximum likelihood classifier consistently produced classification accuracies 10 to 15% higher than either the minimum distance to means or decision tree classifier, this improved accuracy was obtained at the cost of greatly increased processing time. A new type of classifier the spectral shape classifier, which is computationally as fast as a minimum distance to means classifier is described. However, the results for this classifier were disappointing, being lower in most cases than the minimum distance or decision tree procedures. The classification results using only tonal features were felt to be unacceptably poor, therefore textural attributes were investigated. Texture is an important attribute used by photogeologists to discriminate lithology. In the case of TM data, texture measures were found to increase the classification accuracy by up to 15%. However, in the case of the LANDSAT MSS data the use of texture measures did not provide any significant increase in the accuracy of classification. For TM data, it was found that second order texture, especially the SGLDM based measures, produced highest classification accuracy. Contextual post processing was found to increase classification accuracy and improve the visual appearance of classified output by removing isolated misclassified pixels which tend to clutter classified images. Simple contextual features, such as mode filters were found to out perform more complex features such as gravitational filter or minimal area replacement methods. Generally the larger the size of the filter, the greater the increase in the accuracy. Production rules were used to build a knowledge based system which used tonal and textural features to identify sedimentary lithologies in each of the two test sites. The knowledge based system was able to identify six out of ten lithologies correctly.
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.
Resumo:
This study analyzed the health and overall landcover of citrus crops in Florida. The analysis was completed using Landsat satellite imagery available free of charge from the University of Maryland Global Landcover Change Facility. The project hypothesized that combining citrus production (economic) data with citrus area per county derived from spectral signatures would yield correlations between observable spectral reflectance throughout the year, and the fiscal impact of citrus on local economies. A positive correlation between these two data types would allow us to predict the economic impact of citrus using spectral data analysis to determine final crop harvests.
Resumo:
The 5,280 km2 Sian Ka’an Biosphere Reserve includes pristine wetlands fed by ground water from the karst aquifer of the Yucatan Peninsula, Mexico. The inflow through underground karst structures is hard to observe making it difficult to understand, quantify, and predict the wetland dynamics. Remotely sensed Synthetic Aperture Radar (SAR) amplitude and phase observations offer new opportunities to obtain information on hydrologic dynamics useful for wetland management. Backscatter amplitude of SAR data can be used to map flooding extent. Interferometric processing of the backscattered SAR phase data (InSAR) produces temporal phase-changes that can be related to relative water level changes in vegetated wetlands. We used 56 RADARSAT-1 SAR acquisitions to calculate 38 interferograms and 13 flooding maps with 24 day and 48 day time intervals covering July 2006 to March 2008. Flooding extent varied between 1,067 km2 and 2,588 km2 during the study period, and main water input was seen to take place in sloughs during October–December. We propose that main water input areas are associated with water-filled faults that transport ground water from the catchment to the wetlands. InSAR and Landsat data revealed local-scale water divides and surface water flow directions within the wetlands.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. ^ As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. ^ Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.^
Resumo:
Increasingly erratic flow in the upper reaches of the Mara River, has directed attention to land use change as the major cause of this problem. The semi-distributed hydrological model SWAT and Landsat imagery were utilized in order to 1) map existing land use practices, 2) determine the impacts of land use change on water flux; and 3) determine the impacts of climate change scenarios on the water flux of the upper Mara River. This study found that land use change scenarios resulted in more erratic discharge while climate change scenarios had a more predictable impact on the discharge and water balance components. The model results showed the flow was more sensitive to the rainfall changes than land use changes but land use changes reduce dry season flows which is a major problem in the basin. Deforestation increased the peak flows which translated to increased sediment loading in the Mara River.
Resumo:
Mara is a transboundary river located in Kenya and Tanzania and considered to be an important life line to the inhabitants of the Mara-Serengeti ecosystem. It is also a source of water for domestic water supply, irrigation, livestock and wildlife. The alarming increase of water demand as well as the decline in the river flow in recent years has been a major challenge for water resource managers and stakeholders. This has necessitated the knowledge of the available water resources in the basin at different times of the year. Historical rainfall, minimum and maximum stream flows were analyzed. Inter and intra-annual variability of trends in streamflow are discussed. Landsat imagery was utilized in order to analyze the land use land cover in the upper Mara River basin. The semi-distributed hydrological model, Soil and Water Assessment Tool (SWAT) was used to model the basin water balance and understand the hydrologic effect of the recent land use changes from forest-to-agriculture. The results of this study provided the potential hydrological impacts of three land use change scenarios in the upper Mara River basin. It also adds to the existing literature and knowledge base with a view of promoting better land use management practices in the basin.
Resumo:
With the flow of the Mara River becoming increasingly erratic especially in the upper reaches, attention has been directed to land use change as the major cause of this problem. The semi-distributed hydrological model Soil and Water Assessment Tool 5 (SWAT) and Landsat imagery were utilized in the upper Mara River Basin in order to 1) map existing field scale land use practices in order to determine their impact 2) determine the impacts of land use change on water flux; and 3) determine the impacts of rainfall (0%, ±10% and ±20%) and air temperature variations (0% and +5%) based on the Intergovernmental Panel on Climate Change projections on the water flux of the 10 upper Mara River. This study found that the different scenarios impacted on the water balance components differently. Land use changes resulted in a slightly more erratic discharge while rainfall and air temperature changes had a more predictable impact on the discharge and water balance components. These findings demonstrate that the model results 15 show the flow was more sensitive to the rainfall changes than land use changes. It was also shown that land use changes can reduce dry season flow which is the most important problem in the basin. The model shows also deforestation in the Mau Forest increased the peak flows which can also lead to high sediment loading in the Mara River. The effect of the land use and climate change scenarios on the sediment and 20 water quality of the river needs a thorough understanding of the sediment transport processes in addition to observed sediment and water quality data for validation of modeling results.
Resumo:
In the shallow continental shelf in Northeastern Rio Grande do Norte - Brazil, important underwater geomorphological features can be found 6km from the coastline. They are coral reefs, locally known as “parrachos”. The present study aims to characterize and analyze the geomorphological feature as well as the ones of the benthic surface, and the distribution of biogenic sediments found in parrachos at Rio do Fogo and associated shallow platforms, by using remote sensing products and in situ data collections. This was made possible due to sedimentological, bathymetric and geomorphological maps elaborated from composite bands of images from the satellite sensors ETM+/Landsat-7, OLI/Landsat-8, MS/GeoEye and PAN/WordView-1, and analysis of bottom sediments samples. These maps were analyzed, integrally interpreted and validated in fieldwork, thus permitting the generation of a new geomorphological zoning of the shallow shelf in study and a geoenvironmental map of the Parrachos in Rio do Fogo. The images used were subject to Digital Image Processing techniques. All obtained data and information were stored in a Geographic Information System (GIS) and can become available to the scientific community. This shallow platform has a carbonate bottom composed mostly by algae. Collected and analyzed sediment samples can be classified as biogenic carbonatic sands, as they are composed 75% by calcareous algae, according to the found samples. The most abundant classes are green algae, red algae, nonbiogenic sediments (mineral grains), ancient algae and molluscs. At the parrachos the following was mapped: Barreta Channel, intertidal reefs, submerged reefs, the spur and grooves, the pools, the sandy bank, the bank of algae, sea grass, submerged roads and Rio do Fogo Channel. This work presents new information about geomorphology and evolution in the study area, and will be guiding future decision making in the handling and environmental management of the region