770 resultados para LIQUID SCINTILLATORS
Resumo:
In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases
Resumo:
In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases
Resumo:
In this paper, we describe the use of an open cell photoacoustic configuration for the evaluation of the thermal effusivity of liquid crystals. The feasibility, precision and reliability of the method are initially established by measuring the thermal effusivities of water and glycerol, for which the effusivity values are known accurately. In order to demonstrate the use of the present method in the thermal characterization of liquid crystals, we have measured the thermal effusivity values in various mesophases of 4-cyano-4 - octyloxybiphenyl (8OCB) and 4-cyano-4 -heptyloxybiphenyl (7OCB) liquid crystals using a variable temperature open photoacoustic cell. A comparison of the measured values for the two liquid crystals shows that the thermal effusivities of 7OCB in the nematic and isotropic phases are slightly less than those of 8OCB in the corresponding phases
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase
Resumo:
We report on a laser induced photoacoustic study of the nematic-to-isotropic transition in certain commercial nematic liquid crystal mixtures, namely BL001, BL002, BL032 and BL035. A simple analysis of the experimental data using the Rosencwaig–Gersho theory shows that the heat capacities of all these compounds exhibit a sharp peak as the temperature of the sample is varied across the transition region. Also, substantial differences in the photoacoustic signal amplitudes in nematic and isotropic phases have been noticed for all the mixtures. The increased light scattering property of the nematic phase may be the reason for the enhanced photoacoustic signal amplitude in this phase.
Resumo:
PVC supported liquid membrane and carbon paste potentiometric sensors incorporating an Mn(III)-porphyrin complex as a neutral host molecule were developed for the determination of paracetamol. The measurements were carried out in solution at pH 5.5. Under such conditions paracetamol exists as a neutral molecule. The mechanism of molecular recognition between the Mn(III)-porphyrin and paracetamol, leading to potentiometric signal generation, is discussed.The sensitivity and selectivity toward paracetamol of carbon paste and polymeric liquid membrane electrodes incorporating an Mn(III)-porphyrin host were compared. The applicability of these sensors to the direct determination of paracetamol was checked by performing a recovery test in human plasma.
Resumo:
Department of Electronics, Cochin University of Science and Technology
Resumo:
The liquid-phase Friedel-Crafts acylation of toluene using benzoyl chloride as benzoylating agent has heen carried out over Nix, Mn(l-x)Fe2 O4 (x=O, 0.2, 0.4, 0.6, 0.8 and 1.0) type systems under different reaction conditions. It is observed that the systems with high 'x' values are effective for the conversion of BOC and the selective formation of 4-MBP. Selectivity for 4-MBP over MnFe2O4 is more than 90% under the optimized reaction conditions. Sites of moderate acidity is effective in calalyzing the benzoylation reaction.
Resumo:
Iron, aluminium and mixed iron aluminium pillared clays have been prepared by partial hydrolysis method and doped with IO% Mo, V and Cr. The samples have been characterised by XRD, FTIR and surface area and pore Volume measurements. The surface acid site distribution has been determined by temperature programmed desorption of ammonia. Vanadia incorporated systems show maximum acidity. Benzylation of o-xylene has been done as probe reaction to test catalytic activity. Benzyl chloride is a superior benzylating agent compared to benzyl alcohol in activity and selectivity. Cent percent selectivity towards monobenzylated product is obtained in all the cases. Fe pillared systems exhibit maximum activity. The catalytic activities of the systems can be correlated with the amount of strong add sites. The effects of various reaction variables on the reaction have been studied. Presence of moisture has a diminishing effect on the reaction rate.
Resumo:
The present work undertakes the preparation and physico-chemical characterisation of iron promoted sulphated zirconia (SZ) with different amounts of iron loading and their application to Friedel-Crafts benzoylation of benzene, toluene and xylene under different experimental conditions, XRD and laser Raman techniques reveal the stabilisation of the tetragonal phase of zirconia and the existence of iron in highly dispersed form as Fe203 on the catalyst surface. The surface acidic properties were determined by ammonia temperature programmed desorption (TPD) and perylene adsorption, The results were supported by the TGA studies after adsorption of pyridine and 2,6-dimethylpyridine (2,6-DMP), Strong Lewis acid sites on the surface, which are evident from TPD and perylene adsorption studies. explain the high catalytic activity of the systems towards benzoylation. The experimental results provide evidence for the truly heterogeneous nature of the reaction. The studies also establish the resistance to deactivation in the metal incorporated sulphated systems.
Resumo:
Vanadia/ceria catalysts (2–10 wt% of V2O5) were prepared by wet impregnation of ammonium metavanadate in oxalic acid solution. Structural characterization was done with energy dispersive X-ray analysis (EDX), powder X-ray diffraction (XRD), BET surface area measurements, FT-IR spectroscopy and nuclear magnetic spectral analysis (51V MASNMR). XRD and 51V MASNMR results show highly dispersed vanadia species at lower loadings and the formation of CeVO4 phase at higher V2O5 loading. The catalytic activity of catalysts was conducted in liquid phase oxidation of ethylbenzene with H2O2 as oxidant. The oxidation activity is increased with loading up to 8 wt% V2O5 and then decreased with further increase in V2O5 content to 10 wt%. Different vanadia species evidenced by various techniques were found to be selective towards ethylbenzene oxidation. The CeVO4 formation associated with increased concentration of vanadia on ceria results the production of acetophenone along with 2-hydroxyacetophenone.
Resumo:
he phenomenon of single beam mirage effect, otherwise known as photothermal deflection (PTD) effect using a He–Ne laser beam has been employed to detect phase transitions in some liquid crystals. It has been observed that anomalous changes in amplitude occur in the PTD signal level near the transition temperature. The experimental details and the results of measurements made in liquid crystals E8, M21 and M24 are given in this paper.