991 resultados para LEAF-AREA
Resumo:
The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively.
Resumo:
A field trial was carried out in Santa Rita do Passa Quatro, SP, on sandy soil, between February 1993 to February 1995, aiming to study the effects of fertilizer doses and brachiaria grass control on the growth of E. grandis. In the field the plots (9×9 plants, spacing 2×3 m) were located following a randomized block experimental design with four repetitions. The treatments were arranged in a factorial design with four systems of brachiaria grass control in the space between the Eucalyptus rows: mowing, cultivation, chemical control with glyphosate (2,08 kg eq. ác./ha) and hand hoeing were developed when the population reached the early flowering stage and four doses of the fertilizer 20-05-20: 0, 115, 230 and 345 kg/ha, handled at 3, 6 and 12 monthes after the transplantation. The hand hoeing was the most effective method of brachiaria grass control. However the hand hoeing controlled plots showed a decrease on the E. grandis growth exhibiting slower growth rate, shorter plants, thinner stems, smaller leaf area results and reduction on dry matter accumulation than the plants from the other plots under different weed control management's. The glyphosate promoted an excellent brachiaria grass control while the E. grandis plants grow better. Both remainder weed control management systems were intermediary in terms of efficacy. The mowing management was the most similar method as compared to the hand hoeing one and the cultivation treatments to the chemical control method. The growth rate differences observed between the hand hoeing and chemical control treatments were not caused directly by late fertilizations. There were no significative interactions among the weed control systems and the fertilization doses. Considering the brachiaria grass that grew between the E. grandis rows there were detected benefits to the crop and these effects increased when the chemical control was used for weed management.
Resumo:
The present work was conducted with the objective to study the effects of mineral nutrition on Eucalyptus grandis and Brachiaria decumbens (#BRADC) growth, when submitted to inter- and intra-specific competition. The treatments consisted of two plants of Eucalypts/pot, two plants of BRADC/pot, and one plant of each species/pot. The plants were nourished with the Hoagland e Arnon (1950) complete solution; with no K, P or N; or only with either N, P or K. Sixty days after growing side by side, no effect of the inter- and intra-specific competition on eucalypts plant high, branch number and leaf dry mass was observed. When mineral nutrition did not limit plant growth (complete solution or solution with no K), intra-specific competition reduced on average, 23% of eucalypts root length, leaf area, and stem and root dry mass, and inter-specific competition reduced, on average, 75% of BRADC dry mass. When mineral nutrition became a limiting factor, no plant competition effect on the parameters studied was detected.
Resumo:
Tests were carried out to evaluate resistance of common bean (Phaseolus vulgaris L.) to Diabrotica speciosa (Ger.) with the genotypes Goiano Precoce, Jalo Precoce, PR 95105146, PR 95105142 (Andean domestication center, AN), Emgopa 201 Ouro and IAPAR 57 (Middle American domestication center, MA). The experiments were conducted in 1998 and 1999, at the farm of UNESP-FCAV, Jaboticabal, SP, Brazil. The genotypes were planted in pots and 20 day-old leaflets were collected and foliar disks were cut of for the test. Two trials, a no-choice test and a free-choice test, were set up in BOD. In free-choice test, two disks of each genotype were kept in a 140-mm-diameter petri dish (total of 12 disks), where 12 adults were confined. In no-choice test, two disks of one genotype and two insects were placed in a 60-mm-diameter petri dish. A field experiment was conducted when 400 adults of D. speciosa were released. Fifteen leaflets per plot were collected 30 days after planting and the leaf area consumption was evaluated. A no-choice experiment was carried out with 20 day-old genotypes protected in individual cages and infested by 10 adults, for 72h. The MA genotypes were the most preferred on feeding tests conducted at BOD, field and individual cages, while the AN genotypes were less eaten.
Resumo:
In order to verify the effect of Brachiaria decumbens plant density on the initial growth of Eucalyptus grandis plants, one assay was conducted under semi-controlled conditions of soil fertility and humidity. Dark red Latossol, collected from the arable layer, was used as substrate in 50 liters amianthus cement boxes. One seedling of Eucalyptus was planted in each box. Fifteen days later, seedlings of B. decumbens were transplanted on the same box. The treatments consisted of 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 60, 80, 100, and 120 plants of B. decumbens. The experimental design was the complete randomized design, with 15 treatments and four replicates. The Eucalyptus plants that lived with B. decumbens were evaluated for stem diameter, plant high, leaf area, and dry weight of stem, branches and leaves. B. decumbens plants were evaluated for dry weight of aerial parts. B. decumbens, at the density level of four plants per m 2 and over, reduced of the initial growth of the Eucalyptus plants. B. decumbens reduced on average 27.78% stem diameter, 18.47% plant high, 70.56% leaf number, 63.26% leaf area, and 55.22%, 77.29% and 55.30% of stem, branch and leaf dry weight, respectively. Plant high was not a good parameter to evaluate the B. decumbens interference.
Resumo:
The buttonweed (Spermacoce latifolia) is becoming a plant among the most current infesting eucalypts plantation in State of São Paulo due to the continual use of same herbicides and control methods. Owing this, this work aimed to evaluate the effects of periods of company and control of S. Iatifolia on the initial growth of Eucalyptus grandis, planted in winter and summer. Only one seedling of Eucalyptus was planted in amianthus cement box and submitted for crescent periods of company and control of S. Iatifolia (0, 20, 60 and 80 days in competition or not). The densities of plants of S. Iatifolia were 4 and 16 plants per m 2 (under winner and summer conditions). The experimental period was 100 days after the planting (DAP). The experimental design for both experiments was the completely randomized blocks (CRB) with ten treatments and four replicates. The results of plant high, stem diameter, dries weights and leaf area showed that the before interference period (BIP), whole period of prevention for interference (WPPI) and critical period of prevention for interference (CPPI) were 40, 60, and 60 DAR, respectively, under winner conditions. Under summer conditions, the WPPI and CPPI were 20, 80 and 20 to 80 DAR.
Resumo:
We compared tolerance to soil drought of two field-grown clones of Coffea canephora (clone 46, drought-sensitive; and clone 120, drought-tolerant). Under irrigation, there were no marked differences between the clones in water relation parameters, gas exchange and total leaf area. Under rainfed conditions, clone 46 showed osmotic adjustment and increased tissue rigidity. These adjustments, however, were incapable of preventing substantial decreases in xylem pressure potential. By contrast, clone 120 did not exhibit osmotic adjustment, but was able to increase tissue elasticity and to maintain xylem pressure potentials to a greater extent than clone 46 (despite having twice the total leaf area of this clone). Stomatal conductance was lowered by drought in clone 120 but not in clone 46. Carbon assimilation per unit leaf area in both clones remained unaffected under stress. Long-term water use efficiency (WUE), as estimated through carbon isotope discrimination, was consistently greater in clone 120 than in clone 46. Because of these traits, clone 120 was better able to postpone dehydration and to maintain whole-tree photosynthesis. It is proposed that these features should decisively contribute to buffer its productivity in drought-prone areas. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Growth effects of cultivation on soil, sand and commercial substrate, on summer and winter time, of 'Bonus #2', 'Don Carlo's and 'Hy Mark' were assessed. The experiments were conducted in a greenhouse of FCAV-UNESP, in Jaboticabal- SP, Brazil, 21° 15' 22 S, 48° 18'58 W, and an altitude of 595 m, comprising the period from November '99 to April 2000 (Summer), and from July to November 2000 (Winter). On soil cultivation, chemical nutrients were used, and the plants received drip irrigation. On sand, fertigation with recirculation of the nutrient solution were used, and slabs and fertigation with non circulating nutrient solution was used with commercial substrate. 'Bonus #2', grown on sand and in the summer season had improved plant height, internodes length, stem diameter, leaf area and dry matter of shoots and roots. 'Hy Mark', when cultivated on commercial substrate had lower growth. During winter season, the growth was slower.
Resumo:
This objective of this study was to evaluate the effects of different methods of red beet seedling production and direct sowing on the development of the plant in field conditions. 'Tall Top Early Wonder' was used as the cultivar. The experimental design was a randomized blocks with 4 replications of each treatment: T1 - seedling produced in trays of 288 cells; T2 - 200 cells; T3 - 128 cells; T4 - 128 cells; T5 - direct sowing and T6 - bare-root seedling. The seedlings produced in trays and bare root seedlings were transplanted in the field 28 DAS with spacing of 0.20 x 0.10m. The mean height of plants, leaf area, leaf dry matter, petiole dry matter, shoot dry matter, root dry matter, relationship between shoot dry matter and root dry matter, absolute growth rate, relative growth rate, net assimilation rate, leaf area ratio and specific leaf area were determined. Storage root fresh matter and mean storage root diameter were determined starting from 77 DAS. Initial growth of the plants were superior for the direct sowing, resulting in smaller RGR and NAR than the other treatments. Independent of the production method, an increase of the cycle of the crop was verified. T6 had larger delay in the initial development. There was no difference for productivity. Method T1, had less expenses with respect to substrate and space in the vegetation home, without reduction in production.
Resumo:
In order to verify the effect of Panicum maximum plant density on the initial growth of Eucalyptus grandis plants, one assay was conducted under semi-controlled conditions of soil fertility and humidity. Dark red Latossol, collected from the arable layer, was used as substrate in 50 liters amianthus cement boxes. One seedling of Eucalyptus was planted in each box. Fifteen days later, seedlings of P. maximum were transplanted on the same box. The treatments consisted of 0, 4, 8, 12, 16 and 20 plants of P. maximum per m 2. The experimental design was the complete randomized design, with six treatments and eight replicates for P. maximum. One hundred and ten and 190 days after transplanting, Eucalyptus plants grown among P. maximum showed an average reduction of 30.80 and 46.55% stem diameter, 25.10 and 22.50 plant high, 40.18 and 31.29% stem dry weight, 61.32 and 54.06% branch dry weight, 53.72 and 51.82% root dry weight, 44.62 and 38.50% leaf dry weight, 22.51 and 23.16 branch number, 20.72 and 19.97% leaf number, and 33.88 and 17.05% leaf area, respectively.
Resumo:
The objective of this study was to determine the influence of five different water levels on the crop development of Calla. The crop parameters evaluated were leaf area and evapotranspiration. The study was conducted in glass greenhouse with 50% of sunlight reduction. The plants were grown in PVC pots with 150 mm diameter, which were filled with substrate. The plant tubers weighed from 10 g to 12 g. The pots were placed within containers, under water level constant automatically.. The table water levels used were 10, 17, 24, 31 and 38 cm. Nine evaluations during the growth cycle checked the growth development. The evaporation varied from 26.89 to 46.14 L.plant-1 for 38 and 10 cm water levels, respectively and leaf area per plant showed 1011.6 to 2016.3 for the same levels. The substrate water was more available in the treatment 24 cm, with more restrictions in the upper and lower treatments. There was positive correlation between leaf area and evapotranspiration at the final of the culture.
Resumo:
The coffee crop is expanding to new areas with not enough studies about its response to saline irrigation water. The initial growth of coffee plant was evaluated, in greenhouse at the Engineering Department of the Federal University of Lavras (UFLA), under different levels of irrigation water salinity. The completely randomized design was used with 6 treatments (S0 = 0.0 dS m -1, S1 = 0.6 dS m -1, S2 = 1.2 dS m -1, S3 = 1.8 dS m -1, S4 = 2.4 dS m -1 and S5 = 3.0 dS m -1) and 4 replications. The irrigation was accomplished according to soil water retention curve and resistance block reading, restoring the soil water content to its field capacity. It was verified that water salinity affected the plants characteristics significantly. The water salinity above 1.2 dS m -1 caused damage to plant development resulting, in some cases, in death of plants. The leaf area of plant was the variable most affected by salinity of irrigation water. By the end of the experiment, the soil was classified as saline-sodic.
Resumo:
The objective of this research was to study the effects of five different treatments of grass (Brachiaria decumbens) straw mulch on common beans (Phaseolus vulgaris L.): 0% (0 t.ha-1), 25% (2,25 t.ha-1), 50% (4,5 t.ha-1), 75% (6,75 t. ha-1) and 100% (9,0 t/ha) designed by randomized blocks, with four replicates. The irrigation was applied when minimum soil water potential were reached about - 30kPa. The water management based on tensiometers and soil water characteristic curve. A microsprinkler irrigation system was used. The experiment was set up at the Experimental Station of Embrapa Rice and Bean (Empresa Brasileira de Pesquisa Agropecuária Arroz e Feijão) at Santo Antonio de Goiás, Brazil, in a Dark - Red Latosol soil. The results showed: the bean yield and his components were not affected by treatments, except grain number/pod,. The mulch increased the water use efficiency and, consequently, decreased the number of irrigations when the mulch reached more than 50% straw mulch. The treatment with 100% of mulching presented the largest leaf area index and dry matter accumulation was not affected by mulching.
Resumo:
The aim of this experiment was to study the influence of several levels of magnesium on development and essential oil content of basil, plants were cultivated using Hoagland and Arnon (1950) number one 1 complete solution, containing 48.6 mg L -1 and with decreasing levels of magnesium (24.3 mg L -1 and 12.1 mg L -1). The experimental design was completely randomized, in a factorial scheme 3x3, which is, three levels of magnesium and three harvest times, with three replications each. The parameters evaluated were the stem length, leaf dry mass, stem dry mass, roots dry mass, absolute growth rate (AGR), relative growth rate (RGR), net assimilatory rate (NAR), leaf area ratio (LAR), leaf mass ratio (LMR), dry mass distribution on several organs, stem and leaf/root ratio and essential oil yield, all those measured in three harvest time 30, 60 and 90 days after transplantation (DAT). Plants cultivated with the lower levels of magnesium showed no symptoms of deficiency, but showed differences in the parameters studied. Essential oil yield was higher at 30 DAT for plants cultivated with 12.1 mg L -1 the magnesium. Our results suggests that Hoagland and Arnon (1950) no 1 complete solution overestimates the level of magnesium, as has been observed in several other plant species.
Resumo:
The research aimed at the evaluation of the influence of different potassium doses on the growth and development of Mentha piperita L. The experiment was conducted with stalks rooted in a commercial substrate and transplanted to a complete nutritive solution varying the treatments as following: (a) 234 mg L-1 of K; (b) 117 mg L-1 of K; and (c) 58.5 mg L-1 of K. Plants were evaluated at 21, 42, 63, 84 and 105 days after transplanting (DAT). In this study there were determined the physiological indexes leaf area ratio (LAR), specific leaf area (SLA), net assimilatory rate (NAR) and relative growth rate (RGR) were determined. The results indicated that the decreasing of K concentration to 25% did not affect the LAR, SLA, NAR and RGR physiological indexes.