925 resultados para Knee kinematics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Autologous chondrocyte implantation is a cell therapeutic approach for the treatment of chondral and osteochondral defects in the knee joint. The authors previously reported on the histologic and radiologic outcome of autologous chondrocyte implantation in the short- to midterm, which yields mixed results. Purpose The objective is to report on the clinical outcome of autologous chondrocyte implantation for the knee in the midterm to long term. Study Design Cohort study; Level of evidence, 3. Methods Eighty patients who had undergone autologous chondrocyte implantation of the knee with mid- to long-term follow-up were analyzed. The mean patient age was 34.6 years (standard deviation, 9.1 years), with 63 men and 17 women. Seventy-one patients presented with a focal chondral defect, with a median defect area of 4.1 cm2 and a maximum defect area of 20 cm2. The modified Lysholm score was used as a self-reporting clinical outcome measure to determine the following: (1) What is the typical pattern over time of clinical outcome after autologous chondrocyte implantation; and (2) Which patient-related predictors for the clinical outcome pattern can be used to improve patient selection for autologous chondrocyte implantation? Results The average follow-up time was 5 years (range, 2.7–9.3). Improvement in clinical outcome was found in 65 patients (81%), while 15 patients (19%) showed a decline in outcome. The median preoperative Lysholm score of 54 increased to a median of 78 points. The most rapid improvement in Lysholm score was over the 15-month period after operation, after which the Lysholm score remained constant for up to 9 years. The authors were unable to identify any patient-specific factors (ie, age, gender, defect size, defect location, number of previous operations, preoperative Lysholm score) that could predict the change in clinical outcome in the first 15 months. Conclusion Autologous chondrocyte implantation seems to provide a durable clinical outcome in those patients demonstrating success at 15 months after operation. Comparisons between other outcome measures of autologous chondrocyte implantation should be focused on the clinical status at 15 months after surgery. The patient-reported clinical outcome at 15 months is a major predictor of the mid- to long-term success of autologous chondrocyte implantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinematic mapping of a rigid open-link manipulator is a homomorphism between Lie groups. The homomorphisrn has solution groups that act on an inverse kinematic solution element. A canonical representation of solution group operators that act on a solution element of three and seven degree-of-freedom (do!) dextrous manipulators is determined by geometric analysis. Seven canonical solution groups are determined for the seven do! Robotics Research K-1207 and Hollerbach arms. The solution element of a dextrous manipulator is a collection of trivial fibre bundles with solution fibres homotopic to the Torus. If fibre solutions are parameterised by a scalar, a direct inverse funct.ion that maps the scalar and Cartesian base space coordinates to solution element fibre coordinates may be defined. A direct inverse pararneterisation of a solution element may be approximated by a local linear map generated by an inverse augmented Jacobian correction of a linear interpolation. The action of canonical solution group operators on a local linear approximation of the solution element of inverse kinematics of dextrous manipulators generates cyclical solutions. The solution representation is proposed as a model of inverse kinematic transformations in primate nervous systems. Simultaneous calibration of a composition of stereo-camera and manipulator kinematic models is under-determined by equi-output parameter groups in the composition of stereo-camera and Denavit Hartenberg (DH) rnodels. An error measure for simultaneous calibration of a composition of models is derived and parameter subsets with no equi-output groups are determined by numerical experiments to simultaneously calibrate the composition of homogeneous or pan-tilt stereo-camera with DH models. For acceleration of exact Newton second-order re-calibration of DH parameters after a sequential calibration of stereo-camera and DH parameters, an optimal numerical evaluation of DH matrix first order and second order error derivatives with respect to a re-calibration error function is derived, implemented and tested. A distributed object environment for point and click image-based tele-command of manipulators and stereo-cameras is specified and implemented that supports rapid prototyping of numerical experiments in distributed system control. The environment is validated by a hierarchical k-fold cross validated calibration to Cartesian space of a radial basis function regression correction of an affine stereo model. Basic design and performance requirements are defined for scalable virtual micro-kernels that broker inter-Java-virtual-machine remote method invocations between components of secure manageable fault-tolerant open distributed agile Total Quality Managed ISO 9000+ conformant Just in Time manufacturing systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of "Helical Interference" in milled slots is examined and a coherent theory for the geometry of such surfaces is presented. An examination of the relevant literature shows a fragmented approach to the problem owing to its normally destructive nature, so a complete analysis is developed for slots of constant lead, thus giving a united and exact theory for many different setting parameters and a range of cutter shapes. For the first time, a theory is developed to explain the "Interference Surface" generated in variable lead slots for cylindrical work and attention is drawn to other practical surfaces, such as cones, where variable leads are encountered. Although generally outside the scope of this work, an introductory analysis of these cases is considered in order to develop the cylindrical theory. Special emphasis is laid upon practical areas where the interference mechanism can be used constructively and its application as the rake face of a cutting tool is discussed. A theory of rake angle for such cutting tools is given for commonly used planes, and relative variations in calculated rake angle between planes is examined. Practical tests are conducted to validate both constant lead and variable lead theories and some design improvements to the conventional dividing head are suggested in order to manufacture variable lead workpieces, by use of a "superposed" rotation. A prototype machine is manufactured and its kinematic principle given for both linear and non-linearly varying superposed rotations. Practical workpieces of the former type are manufactured and compared with analytical predictions,while theoretical curves are generated for non-linear workpieces and then compared with those of linear geometry. Finally suggestions are made for the application of these principles to the manufacture of spiral bevel gears, using the "Interference Surface" along a cone as the tooth form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ackground Following incomplete spinal cord injury (iSCI), descending drive is impaired, possibly leading to a decrease in the complexity of gait. To test the hypothesis that iSCI impairs gait coordination and decreases locomotor complexity, we collected 3D joint angle kinematics and muscle parameters of rats with a sham or an incomplete spinal cord injury. Methods 12 adult, female, Long-Evans rats, 6 sham and 6 mild-moderate T8 iSCI, were tested 4 weeks following injury. The Basso Beattie Bresnahan locomotor score was used to verify injury severity. Animals had reflective markers placed on the bony prominences of their limb joints and were filmed in 3D while walking on a treadmill. Joint angles and segment motion were analyzed quantitatively, and complexity of joint angle trajectory and overall gait were calculated using permutation entropy and principal component analysis, respectively. Following treadmill testing, the animals were euthanized and hindlimb muscles removed. Excised muscles were tested for mass, density, fiber length, pennation angle, and relaxed sarcomere length. Results Muscle parameters were similar between groups with no evidence of muscle atrophy. The animals showed overextension of the ankle, which was compensated for by a decreased range of motion at the knee. Left-right coordination was altered, leading to left and right knee movements that are entirely out of phase, with one joint moving while the other is stationary. Movement patterns remained symmetric. Permutation entropy measures indicated changes in complexity on a joint specific basis, with the largest changes at the ankle. No significant difference was seen using principal component analysis. Rats were able to achieve stable weight bearing locomotion at reasonable speeds on the treadmill despite these deficiencies. Conclusions Decrease in supraspinal control following iSCI causes a loss of complexity of ankle kinematics. This loss can be entirely due to loss of supraspinal control in the absence of muscle atrophy and may be quantified using permutation entropy. Joint-specific differences in kinematic complexity may be attributed to different sources of motor control. This work indicates the importance of the ankle for rehabilitation interventions following spinal cord injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to explore deprivation experienced by the nineteenth century Sioux who suffered the loss of traditional lands, economic independence, buffalo, tribal customs, and religion. After years of reservation life, starvation, and deprivation at the hands of the U.S. government, white settlers, and reservation agents, the Sioux anxiously sought out a Paiute Indian Messiah named Wovoka whose message of a new Indian world spread rapidly throughout the Dakotas. The use of extensive historical and religious documents, as well as primary sources, will argue that the extent of desperation experienced by the Sioux drove them to accept the Ghost Dance as a substitute for the Sun Dance, the center of their traditional religious complex. With its hope of the resurrection of dead Indians, return of the buffalo, and renewal of the earth, it was immediately adopted leading ultimately to the massacre at Wounded Knee in 1890 and the passing of Wovoka's religion into history.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Gait after stroke is characterized by a significant asymmetry between the lower limbs, with predominant use of the non-paretic lower limb (NPLL) over using the paretic lower limb. Accordingly, it has been suggested that adding load/weight to the NPLL as a form of restricting the movement of this limb may favor the use of the paretic limb, reducing interlimb asymmetry. However, few studies have been conducted up to this moment, which only investigated the immediate effects of this practice. Objectives: 1) Investigating whether there is an influence of adding load to the NPLL during treadmill training on cardiovascular parameters and on gait performance of individuals with stroke, compared to treadmill training without load addition; 2) Analyzing the effects of treadmill training with and without load added to the NPLL on kinematic parameters of each lower limb during gait; 3) Analyzing the effects of treadmill training with and without load added to the NPLL on measurements of functional mobility and postural balance of these patients. Materials and Methods: This is a randomized single blinded clinical trial involving 38 subjects, with a mean age of 56.5 years, at the subacute post-stroke phase (with mean time since stroke of 4.5 months). Participants were randomly assigned into an experimental group (EG) or control group (CG). EG (n= 19) was submitted to gait training on a treadmill with the addition of load to the NPLL by ankle weights equivalent to 5% of body weight. CG (n= 19) was only submitted to gait training on a treadmill. Behavioral strategies which included home exercises were also applied to both groups. The interventions occurred daily for two consecutive weeks (Day 1 to Day 9), being of 30 minutes duration each. Outcome measures: postural balance (Berg Functional Balance Scale – BBS), functional mobility (Timed Up and Go – TUG; kinematic variables of 180° turning) and kinematic gait variables were assessed at baseline (Day 0), after four training sessions (Day 4), after nine training sessions (Day 9), and 40 days after completion of training (Follow-up). Cardiovascular parameters (mean arterial pressure and heart rate) were evaluated at four moments within each training session. Analysis of variance (ANOVA) was used to compare outcomes between EG and CG in the course of the study (Day 0, Day 4, Day 9 and Follow-up). Unpaired t-tests allowed for intergroup comparison at each training session. 5% significance was used for all tests. Results: 1) Cardiovascular parameters (systemic arterial pressure, heart rate and derivated variables) did not change after the interventions and there were no differences between groups within each training session. There was an improvement in gait performance, with increased speed and distance covered, with no statistically significant difference between groups. 2) After the interventions, patients had increased paretic and non-paretic step lengths, in addition to exhibiting greater hip and knee joint excursion on both lower limbs. The gains were observed in the EG and CG, with no statistical difference between the groups and (mostly) maintained at follow-up. 3) After the interventions, patients showed better postural balance (higher scores on BBS) and functional mobility (reduced time spent on the TUG test and better performance on the 180° turning). All gains were observed in the EG and CG, with no statistically significant difference between groups and were maintained at follow-up. Conclusions: The addition of load to the NPLL did not affect cardiovascular parameters in patients with subacute stroke, similar to treadmill training without load, thus seemingly a safe training to be applied to these patients. However, the use of the load did not bring any additional benefits to gait training. The gait training program (nine training sessions on a treadmill + strategies and exercises for paretic limb stimulation) was useful for improving gait performance and kinematics, functional mobility and postural balance, and its use is suggested to promote the optimization of these outcomes in the subacute phase after stroke.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The major objectives of this thesis were to determine if foam rolling had any effect on antagonist muscle activation and whether those changes would alter muscular co-activation patterns. The results from this thesis along with current literature will help clinicians to develop adequate exercise prescription for rehabilitative and pre-activity purposes. The existing literature has shown that foam rolling or roller massagers can increase range of motion (ROM), improve performance, and alter pain perception, however little research exists regarding changes in muscle activation following foam rolling. This study developed a reliable method for measuring muscle activation around the knee joint and using that method found that foam rolling the quadriceps can impair hamstrings muscle activation likely due to greater levels of perceived pain when rolling the quadriceps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Funding was provided in part by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) K23 AR061406 (Nelson); US National Institutes of Health (NIH)/NIAMS P60AR30701 (Jordan/Renner/Schwartz); US Centers for Disease Control/Association of Schools of Public Health S043 and S3486 (Jordan/Renner); K24-AR04884, P50-AR063043, and P50-AR060752 (Lane); and NIH/National Center for Advancing Translational Sciences KL2TR001109 (Golightly).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematics of swimming behavior of larval Atlantic cod, aged 12 and 27 days post-hatch (dph) and cultured under three pCO2 conditions (control-370, medium-1800, and high-4200 µatm) from March to May 2010, were extracted from swim path recordings obtained using silhouette video photography. The swim paths were analyzed for swim duration, distance and speed, stop duration, and horizontal and vertical turn angles to determine whether elevated seawater pCO2-at beyond near-future ocean acidification levels-affects the swimming kinematics of Atlantic cod larvae. There were no significant differences in most of the variables tested: the swimming kinematics of Atlantic cod larvae at 12 and 27 dph were highly resilient to extremely elevated pCO2 levels. Nonetheless, cod larvae cultured at the highest pCO2 concentration displayed vertical turn angles that were more restricted (median turn angle, 15°) than larvae in the control (19°) and medium (19°) treatments at 12 dph (but not at 27 dph). Significant reduction in the stop duration of cod larvae from the high treatment (median stop duration, 0.28 s) was also observed compared to the larvae from the control group (0.32 s) at 27 dph (but not at 12 dph). The functional and ecological significance of these subtle differences are unclear and, therefore, require further investigation in order to determine whether they are ecologically relevant or spurious.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of joint kinematics can provide knowledge to help improve joint prosthesis design, as well as identify joint motion patterns that may lead to joint degeneration or injury. More investigation into how the hip translates in live human subjects during high amplitude motions is needed. This work presents a design of a non-invasive method using the registration between images from conventional Magnetic Resonance Imaging (MRI) and open MRI to calculate three dimensional hip joint kinematics. The method was tested on a single healthy subject in three different poses. MRI protocols for the conventional gantry, high-resolution MRI and the open gantry, lowresolution MRI were developed. The scan time for the low-resolution protocol was just under 6 minutes. High-resolution meshes and low resolution contours were derived from segmentation of the high-resolution and low-resolution images, respectively. Low-resolution contours described the poses as scanned, whereas the meshes described the bones’ geometries. The meshes and contours were registered to each other, and joint kinematics were calculated. The segmentation and registration were performed for both cortical and sub-cortical bone surfaces. A repeatability study was performed by comparing the kinematic results derived from three users’ segmentations of the sub-cortical bone surfaces from a low-resolution scan. The root mean squared error of all registrations was below 1.92mm. The maximum range between segmenters in translation magnitude was 0.95mm, and the maximum deviation from the average of all orientations was 1.27◦. This work demonstrated that this method for non-invasive measurement of hip kinematics is promising for measuring high-range-of-motion hip motions in vivo.