940 resultados para Intrinsic Estimator (IE)
Resumo:
Purpose: Lipids play a vital role at interfaces such as the tear film in the protection of the anterior eye. Their role is to act as lubricants and reduce surface and interfacial tension. Although there is a lack of appropriate methods to solubilize and dilute phospholipids to the tear film. Here, we report that styrene-maleic acid copolymers (PSMA), can form polymer–lipid complexes in the form of monodisperse nanometric particles, which can easily solubilise these phospholipid molecules by avoiding for example, the use of any kind of surfactant. Method: The interactions of PSMA with phospholipids have been studied by its adsorption from aqueous solutions into monolayers of dimyristoyl-phosphorylcholine (DMPC). The Langmuir trough (LT) technique is used to study this pH-dependant complex formation. The formed nanoparticles have been also analysed by 31P NMR, particle size distribution by light scattering (DLS) and morphology by electron microscopy (SEM). Results: The LT has been found to be a useful technique for in vitro simulation of in vivo lipid layer behaviour: The limiting surface pressure of unstable tear films ranges between 20 and 30 mN/m. More stable tear films show an increase in surface pressure, within the range of 35–45 mN/m. The DMPC monolayers have a limiting surface pressure of 38 mN/m (water), and 45 mN/m (pH 4 buffer), and the PSMA-DMPC complexes formed at pH 4 have a value of 42 mN/m, which resembles that of the stable tear film. The average particle size distribution is 53 ± 10 nm with a low polydispersity index (PDI) of 0.24 ± 0.03. Conclusions: New biocompatible and cheap lipid solubilising agents such as PSMA can be used for the study of the tear film composition and properties. These polymer–lipid complexes in the form of nanoparticles can be used to solubilise and release in a controlled way other hydrophobic molecules such as some drugs or proteins.
Resumo:
The contemporary workplace appears rife with psychological strain, which can have considerable deleterious outcomes to the firm and the individual. However, research on strain in the sales force is underdeveloped. This paper reports the results of a study of the antecedents and consequences of psychological strain in the sales force, with particular attention to the roles of role ambiguity, emotional exhaustion, and intrinsic and extrinsic motivation. Emotional exhaustion is found to increase strain. Intrinsic motivation reduces strain under conditions of relatively high role ambiguity, but leads to more strain under conditions of low role ambiguity. Strain is found to have a J-shaped relationship with turnover intentions, and is linearly related to lower job satisfaction and lower job performance.
Resumo:
We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
Factors associated with duration of dementia in a consecutive series of 103 Alzheimer's disease (AD) cases were studied using the Kaplan-Meier estimator and Cox regression analysis (proportional hazard model). Mean disease duration was 7.1 years (range: 6 weeks-30 years, standard deviation = 5.18); 25% of cases died within four years, 50% within 6.9 years, and 75% within 10 years. Familial AD cases (FAD) had a longer duration than sporadic cases (SAD), especially cases linked to presenilin (PSEN) genes. No significant differences in duration were associated with age, sex, or apolipoprotein E (Apo E) genotype. Duration was reduced in cases with arterial hypertension. Cox regression analysis suggested longer duration was associated with an earlier disease onset and increased senile plaque (SP) and neurofibrillary tangle (NFT) pathology in the orbital gyrus (OrG), CA1 sector of the hippocampus, and nucleus basalis of Meynert (NBM). The data suggest shorter disease duration in SAD and in cases with hypertensive comorbidity. In addition, degree of neuropathology did not influence survival, but spread of SP/NFT pathology into the frontal lobe, hippocampus, and basal forebrain was associated with longer disease duration. © 2014 R. A. Armstrong.
Resumo:
Fps1p is a glycerol efflux channel from Saccharomyces cerevisiae. In this atypical major intrinsic protein neither of the signature NPA motifs of the family, which are part of the pore, is preserved. To understand the functional consequences of this feature, we analyzed the pseudo-NPA motifs of Fps1p by site-directed mutagenesis and assayed the resultant mutant proteins in vivo. In addition, we took advantage of the fact that the closest bacterial homolog of Fps1p, Escherichia coli GlpF, can be functionally expressed in yeast, thus enabling the analysis in yeast cells of mutations that make this typical major intrinsic protein more similar to Fps1p. We observed that mutations made in Fps1p to "restore" the signature NPA motifs did not substantially affect channel function. In contrast, when GlpF was mutated to resemble Fps1p, all mutants had reduced activity compared with wild type. We rationalized these data by constructing models of one GlpF mutant and of the transmembrane core of Fps1p. Our model predicts that the pore of Fps1p is more flexible than that of GlpF. We discuss the fact that this may accommodate the divergent NPA motifs of Fps1p and that the different pore structures of Fps1p and GlpF may reflect the physiological roles of the two glycerol facilitators.
Resumo:
A simple, low cost and fast response time intrinsic relative humidity sensor system based on an etched singlemode polymer fiber Bragg (POFBG) is presented in this paper. A macro-bend linear edge filter which converts the humidity induced wavelength shift into an intensity change is used as the interrogation technique. The singlemode POFBG is etched to micro-meters in diameter to improve the response time of the humidity sensor. A response time of 4.5 s is observed for a polymer FBG with a cladding diameter of 25 μm. The overall sensor system sensitivity was 0.23 mV/%RH. The etched POFBG humidity sensor shows anexponential decrease in response time with a decrease in fiber diameter. The developed sensor might have potential applications in a wide range of applications where fast and accurate real time humidity control is required. © 2013 Elsevier B.V. All rights reserved.
Resumo:
The long crack threshold behaviour of polycrystalline Udimet 720 has been investigated. Faceted crack growth is seen near threshold when the monotonic crack tip plastic zone is contained within the coarsest grain size. At very high load ratios R (=P min/P max) it is possiblefor the monotonic crack tip plastic zone to exceed the coarsest grain size throughout the entire crack growth regime and non1aceted structure insensitive crack growth is then seen down to threshold. Intrinsic threshold values were obtained for non1aceted and faceted crack growth using a constant K max, increasing K min, computer controlled load shedding technique (K is stress intensity factor). Very high R values are obtained at threshold using this technique (0.75-0.95), eliminating closure effects, so the intrinsic resistance of the material to crack propagation is reflected in these values. The intrinsic non1aceted threshold value ΔK th is lower (2.3 MN m -3/2) than the intrinsicfaceted ΔK th value (4.8 MN m -3/2). This is thought to reflect not only the effect of crack branching and deflection (in the faceted case) on the crack driving force, but also the inherent difference in resistance of the material to the two different crack propagation micromechanisms. © 1993 The Institute of Materials.
Resumo:
This article presents the principal results of the doctoral thesis “Isomerism as internal symmetry of molecules” by Valentin Vankov Iliev (Institute of Mathematics and Informatics), successfully defended before the Specialised Academic Council for Informatics and Mathematical Modelling on 15 December, 2008.
Resumo:
A new type of fibre-optic biochemical concentration sensor based on a polymer optical fibre Bragg grating (POFBG) is proposed. The wavelength of the POFBG varies as a function of analyte concentration. The feasibility of this sensing concept is demonstrated by a saline concentration sensor. When polymer fibre is placed in a water based solution the process of osmosis takes place in this water-fibre system. An osmotic pressure which is proportional to the solution concentration, will apply to the fibre in addition to the hydraulic pressure. It tends to drive the water content out of the fibre and into the surrounding solution. When the surrounding solution concentration increases the osmotic pressure increases to drive the water content out of the fibre, consequently increasing the differential hydraulic pressure and reducing the POFBG wavelength. This process will stop once there is a balance between the osmotic pressure and the differential hydraulic pressure. Similarly when the solution concentration decreases the osmotic pressure decreases, leading to a dominant differential hydraulic pressure which drives the water into the fibre till a new pressure balance is established. Therefore the water content in the polymer fibre - and consequently the POFBG wavelength - depends directly on the solution concentration. A POFBG wavelength change of 0.9 nm was measured for saline concentration varying from 0 to 22%. For a wavelength interrogation system with a resolution of 1 pm, a measurement of solution concentration of 0.03% can be expected.
Resumo:
2000 Mathematics Subject Classification: Primary: 62M10, 62J02, 62F12, 62M05, 62P05, 62P10; secondary: 60G46, 60F15.