972 resultados para Intergranular corrosion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel self-healing system, consisting of poly(lactic-co-glycolic) acid (PLGA) porous particles loaded with a corrosion inhibitor, i.e. benzotriazole (BTA), has been successfully achieved via direct electro-spray deposition and subsequent epoxy spraying upon magnesium (Mg) alloy AMlite. The two-step process greatly simplified the multi-step fabrication of smart coatings reported previously. The PLGA particles demonstrate rapid response to both water and pH increase incurred by corrosion of Mg, ensuring instant and ongoing release of BTA to self-heal the protective functionality and retard further corrosion. Furthermore, nanopores in the PLGA–BTA microparticles, formed by the fast evaporation of dichloromethane during the electrospray process, also contribute to the fast release of BTA. Using Mg alloy AMlite as a model substrate which requires corrosion protection, potentiodynamic polarisation characterisation and scratch testing were adopted to reveal the anti-corrosion capability of the active coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloy ZE41 (Mg-Zn-RE-Zr), which is used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This work investigates the mechanism of corrosion, and the interaction between the grain boundary intermetallic phases, the zirconium (Zr)-rich regions within the grains and the bulk Mg rich matrix in both the as-cast and heat-treated conditions. The results of optical and scanning electron microscopy (SEM) show the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The Zr-rich regions play a distinct role in the early stages of corrosion with this alloy. The second part of this work investigates the interaction of two different ionic liquids (ILs) with the surface of the ZE41 alloy. ILs based on trihexyltetradecylphosphonium (P 6,6,6,14) coupled with either diphenylphosphate (DPP) or bis(trifluoromethanesulfonyl) amide (Tf 2N) have been shown to react with Mg alloy surfaces, leading to the formation of a surface film that can improve the corrosion resistance of the alloy. The interaction of the ILs with the ZE41 surface has been investigated by optical microscopy and SEM. Surface characterization has been performed using Time of Flight-Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The surface characterization and microscopy revealed the preferential interaction with the grain boundaries and grain boundary phases. Thus the morphology and microstructure of the Mg surface seems critical in determining the nature of the interaction with the IL. The corrosion protection of the IL films formed on the ZE41 surface was investigated by SEM and potentiodynamic polarisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in surface generation/tip collection mode is investigated as an assessment tool for studying the corrosion behaviour of magnesium in simulated biological fluid. The technique provides a local map of hydrogen (H2) evolution which alone can be used as a direct measure of corrosion. The H2 generated during corrosion of magnesium is oxidized at the probe(i.e. a Pt ultra micro-electrode);with the magnitude of the current generated due to oxidation being indicative of the intensity of H2 evolution at a local scale on the magnesium surface. This method was calibrated using a cathodically polarized Pt disk to simulate H2 evolution in a controlled condition on a homogeneous surface. Potential interference from dissolving Mg or high local pH was also investigated. The technique was implemented for studying H2 evolution at the surface of AZ31 as a model Mg alloy.SECM results combined with SEM-EDX and profilometry data revealed that local domains of higher H2 evolution on the surface of AZ31 are in close proximityof the observed pitting sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different modes of scanning electrochemical mapping (SECM) such as surface generation/tip collection (SG/TC), amperometry, AC-SECM and potentiometry were employed to characterize the active/passive domains, hydrogen gas (H2) evolution and local pH on a corroding surface of AZ31 in simulated biological fluid (SBF). It was found that the main domains of H2 evolution are associated with lower insulating properties of the surface as well as higher local pH. The near surface pH was found to be highly alkaline indicating that, even in a buffered solution such as SBF, the local pH on a corroding AZ31 surface can be significantly different to the bulk pH. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare earth organic compounds can provide an environmentally safe and non-toxic alternative to chromates as corrosion inhibitors for some steel and aluminium applications. For steel lanthanum 4-hydroxy cinnamate offers corrosion protection and reduces the susceptibility to hydrogen embrittlement. Recent work has also indicated that it inhibits the corrosion of steel in environments containing high levels of carbon dioxide. For aluminium alloys, cerium diphenyl phosphate provides excellent corrosion inhibition in chloride environments, and reduces susceptibly to stress corrosion cracking. Furthermore, for both steel and aluminium alloys filiform corrosion can be suppressed when rare earth inhibitor compounds are added as pigments to polymer coatings. The levels of inhibition observed are thought to be due to synergistic effects between the rare earth and organic parts of these novel compounds, and are related to the various species that may be present in the complex chemical conditions that develop in solution close to a metal surface. This paper reviews some of the published research conducted by the group at Deakin University over recent years.©2014 Institute of Materials, Minerals and Mining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Praseodymium 4-hydroxycinnamate (Pr(4OHCin)3) was investigated as a novel corrosion inhibitor for steel in NaCl solutions, and found to be effective at inhibiting corrosion in both CO2-containing and naturally-aerated systems. Surface analysis results suggest that the corrosion inhibition ability of Pr(4OHCin)3 in the naturally-aerated corrosion system could be attributed to the formation of a continuous protective film. For the CO2-containing system, the corrosion inhibition efficiency of Pr(4OHCin)3 was predominantly because of formation of protective inhibiting deposits at the active electrochemical corrosion sites, in addition to a thinner surface film deposit. © 2013.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rare earth 4-hydroxycinnamate compounds including Ce(4OHCin)3, La(4OHCin)3, and Pr(4OHCin)3 has been synthesized and evaluated as novel inhibitors for carbon dioxide corrosion of steel in CO2-saturated sodium chloride solutions. Electrochemical measurements and surface analysis have shown that these REM(4OHCin)3 compounds effectively inhibited CO2 corrosion by forming protective inhibiting deposits that shut down the active electrochemical corrosion sites on the steel surface. Inhibition efficiency was found to increase in the order Ce(4OHCin)3 < La(4OHCin)3 < Pr(4OHCin)3 and with increase in inhibitor concentration up to 0.63 mM. Detailed insights into corrosion inhibition mechanism of these compounds in carbon dioxide environment are also provided.